Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Salibian Barrera, Matías Octavio  
dc.contributor.author
Tyler, David E.  
dc.date.available
2017-06-23T15:18:46Z  
dc.date.issued
2014-10  
dc.identifier.citation
Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; Tyler, David E.; A characterization of elliptical distributions and some optimality properties of principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 131; 10-2014; 254-264  
dc.identifier.issn
0047-259X  
dc.identifier.uri
http://hdl.handle.net/11336/18730  
dc.description.abstract
As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves as an important vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In this paper, we present a simple characterization of elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space. Using this characterization, we establish a stochastic optimality property for the principal component subspaces associated with an elliptically distributed random element, which holds even when second moments do not exist. In addition, when second moments exist, we establish an optimality property regarding unitarily invariant norms of the residuals covariance operator.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Elliptical Distributions  
dc.subject
Functional Data Analysis  
dc.subject
Principal Components  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A characterization of elliptical distributions and some optimality properties of principal components for functional data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-23T14:10:50Z  
dc.journal.volume
131  
dc.journal.pagination
254-264  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina  
dc.description.fil
Fil: Salibian Barrera, Matías Octavio. University Of British Columbia; Canadá  
dc.description.fil
Fil: Tyler, David E.. Rutgers University; Estados Unidos  
dc.journal.title
Journal Of Multivariate Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmva.2014.07.006  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0047259X14001638