Artículo
A characterization of elliptical distributions and some optimality properties of principal components for functional data
Fecha de publicación:
10/2014
Editorial:
Elsevier Inc
Revista:
Journal Of Multivariate Analysis
ISSN:
0047-259X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
As in the multivariate setting, the class of elliptical distributions on separable Hilbert spaces serves as an important vehicle and reference point for the development and evaluation of robust methods in functional data analysis. In this paper, we present a simple characterization of elliptical distributions on separable Hilbert spaces, namely we show that the class of elliptical distributions in the infinite-dimensional case is equivalent to the class of scale mixtures of Gaussian distributions on the space. Using this characterization, we establish a stochastic optimality property for the principal component subspaces associated with an elliptically distributed random element, which holds even when second moments do not exist. In addition, when second moments exist, we establish an optimality property regarding unitarily invariant norms of the residuals covariance operator.
Palabras clave:
Elliptical Distributions
,
Functional Data Analysis
,
Principal Components
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Boente Boente, Graciela Lina; Salibian Barrera, Matías Octavio; Tyler, David E.; A characterization of elliptical distributions and some optimality properties of principal components for functional data; Elsevier Inc; Journal Of Multivariate Analysis; 131; 10-2014; 254-264
Compartir
Altmétricas