Artículo
Finding singularly cospectral graphs
Fecha de publicación:
02/2022
Editorial:
Taylor & Francis Ltd
Revista:
Linear And Multilinear Algebra
ISSN:
0308-1087
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Two graphs having the same spectrum are said to be cospectral. A pair of singularly cospectral graphs is formed by two graphs such that the absolute values of their nonzero eigenvalues coincide. Clearly, a pair of cospectral graphs is also singularly cospectral but the converse may not be true. Two graphs are almost cospectral if their nonzero eigenvalues and their multiplicities coincide. In this paper, we present necessary and sufficient conditions for a pair of graphs to be singularly cospectral, giving an answer to a problem posted by Nikiforov. In addition, we construct an infinite family of pairs of noncospectral singularly cospectral graphs with unbounded number of vertices. It is clear that almost cospectral graphs are also singularly cospectral but the converse is not necessarily true, we present families of graphs where both concepts: almost cospectrality and singularly cospectrality agree.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Conde, Cristian Marcelo; Dratman, Ezequiel; Grippo, Luciano Norberto; Finding singularly cospectral graphs; Taylor & Francis Ltd; Linear And Multilinear Algebra; 2-2022; 1-17
Compartir
Altmétricas