Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems

Rullo, Pablo GabrielIcon ; Braccia, LautaroIcon ; Luppi, Patricio AlfredoIcon ; Zumoffen, David Alejandro RamonIcon ; Feroldi, Diego HernánIcon
Fecha de publicación: 09/2019
Editorial: Pergamon-Elsevier Science Ltd
Revista: Renewable Energy
ISSN: 0960-1481
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

An Hybrid Renewable Energy Systems (HRES) can be described as a set of loads, renewable generation and storage units that can operate in standalone mode or connected to the main grid. In order to obtain a good compromise between capital investment and system reliability, an optimum sizing of all HRES components is needed. As power reliability, system cost and operation of the system depend on each other, the sizing methodology must be integrated with the energy management strategy (EMS). This paper presents an optimization methodology for sizing the components of a standalone hybrid wind/PV system (with hydrogen storage and battery storage), which integrates an EMS based on an economic model predictive control (EMPC) approach. The integrated problem to be solved is presented as a bi-level optimization framework composed of an outer loop and an inner loop. The outer loop is in charge of the HRES sizing and it is solved using Genetic Algorithms (GA). The inner loop solves the EMS for each candidate solution as a rolling horizon mixed integer linear problem (MILP). The results have shown an investment saving as well as a reduction of the operation costs with the proposed methodology.
Palabras clave: BILEVEL MIXED INTEGER NONLINEAR PROBLEM , ECONOMIC MODEL PREDICTIVE CONTROL , GENETIC ALGORITHM , SIZING AND EMS INTEGRATION , STANDALONE HYBRID RENEWABLE ENERGY SYSTEMS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.416Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/185657
URL: https://www.sciencedirect.com/science/article/pii/S0960148119303799
DOI: https://doi.org/10.1016/j.renene.2019.03.074
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Rullo, Pablo Gabriel; Braccia, Lautaro; Luppi, Patricio Alfredo; Zumoffen, David Alejandro Ramon; Feroldi, Diego Hernán; Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems; Pergamon-Elsevier Science Ltd; Renewable Energy; 140; 9-2019; 436-451
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES