Mostrar el registro sencillo del ítem
dc.contributor.author
Crivelli, Tomás
dc.contributor.author
Bouthemy, Patrick
dc.contributor.author
Cernuschi Frias, Bruno
dc.contributor.author
Yao, Jian-Feng
dc.date.available
2023-01-25T12:11:35Z
dc.date.issued
2009
dc.identifier.citation
Learning mixed-state Markov models for statistical motion texture tracking; 12th International Conference on Computer Vision Workshops; Japón; 2009; 444-451
dc.identifier.isbn
978-1-4244-4442-7
dc.identifier.uri
http://hdl.handle.net/11336/185505
dc.description.abstract
A motion texture is the instantaneous scalar map of apparent motion values extracted from a dynamic or temporal texture. It is mostly displayed by natural scene elements (fire, smoke, water) but also involves more general textured motion patterns (eg. a crowd of people, a flock). In this work we are interested in the modeling and tracking of motion textures. Experimentally we observe that such motion maps exhibit values of a mixed type: a discrete component at zero and a continuous component of non-null motion values. Thus, we propose a statistical characterization of motion textures based on a mixed-state causal modeling. Next, the problem of tracking is considered. A set of mixed-state model parameters is learned as a descriptive feature of the motion texture to track and displacement estimation is solved using the conditional Kullback-Leibler divergence for statistical window matching. Results and comparisons are presented on real sequences.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
MIXED STATES
dc.subject
MARKOV RANDOM FIELDS
dc.subject
DYNAMIC TEXTURES
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Learning mixed-state Markov models for statistical motion texture tracking
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-11-09T19:35:01Z
dc.journal.pagination
444-451
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Crivelli, Tomás. Universidad de Buenos Aires; Argentina
dc.description.fil
Fil: Bouthemy, Patrick. Institut National de Recherche en Informatique et en Automatique; Francia
dc.description.fil
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Yao, Jian-Feng. Instituto de Investigación Matemática de Rennes; Francia
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ICCVW.2009.5457666
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/5457666
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
12th International Conference on Computer Vision Workshops
dc.date.evento
2009-09-27
dc.description.paisEvento
Japón
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
12th International Conference on Computer Vision Workshops
dc.date.eventoHasta
2009-10-04
dc.type
Conferencia
Archivos asociados