Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Learning mixed-state Markov models for statistical motion texture tracking

Crivelli, Tomás; Bouthemy, Patrick; Cernuschi Frias, BrunoIcon ; Yao, Jian-Feng
Tipo del evento: Conferencia
Nombre del evento: 12th International Conference on Computer Vision Workshops
Fecha del evento: 27/09/2009
Institución Organizadora: Institute of Electrical and Electronics Engineers;
Título del Libro: 12th International Conference on Computer Vision Workshops
Editorial: Institute of Electrical and Electronics Engineers
ISBN: 978-1-4244-4442-7
Idioma: Inglés
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

A motion texture is the instantaneous scalar map of apparent motion values extracted from a dynamic or temporal texture. It is mostly displayed by natural scene elements (fire, smoke, water) but also involves more general textured motion patterns (eg. a crowd of people, a flock). In this work we are interested in the modeling and tracking of motion textures. Experimentally we observe that such motion maps exhibit values of a mixed type: a discrete component at zero and a continuous component of non-null motion values. Thus, we propose a statistical characterization of motion textures based on a mixed-state causal modeling. Next, the problem of tracking is considered. A set of mixed-state model parameters is learned as a descriptive feature of the motion texture to track and displacement estimation is solved using the conditional Kullback-Leibler divergence for statistical window matching. Results and comparisons are presented on real sequences.
Palabras clave: MIXED STATES , MARKOV RANDOM FIELDS , DYNAMIC TEXTURES
Ver el registro completo
 
Archivos asociados
Tamaño: 1.665Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/185505
DOI: http://dx.doi.org/10.1109/ICCVW.2009.5457666
URL: https://ieeexplore.ieee.org/document/5457666
Colecciones
Eventos(IAM)
Eventos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Learning mixed-state Markov models for statistical motion texture tracking; 12th International Conference on Computer Vision Workshops; Japón; 2009; 444-451
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES