Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Non-parametric upscaling of stochastic simulation models using transition matrices.

Cipriotti, Pablo ArielIcon ; Wiegand, Thorsten; Pütz, Sandro; Bartoloni, Norberto Jose; Paruelo, JoséIcon
Fecha de publicación: 03/2016
Editorial: Wiley
Revista: Methods in Ecology and Evolution
ISSN: 2041-210X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Agrícolas

Resumen

The problem of scaling up from tractable, small-scale observations and experiments to prediction of large-scale patterns is at the core of ecological theory and application, and one of the central problems in ecology. We present and test a general nonparametric framework to upscale spatially explicit and stochastic simulation models. The idea is to design a state space, defined by the important state variables of the small-scale model, and to divide it into a finite number of discrete states. Transition probabilities are then tallied by monitoring extensive simulation runs of the small-scale model, covering the entire range of initial conditions, states and external drivers that may occur for the desired application. We exemplify our approach by upscaling an individual-based model that simulates the spatiotemporal dynamics of Festuca pallescens steppes under sheep grazing in Western Patagonia, Argentina, with a spatial resolution of 0·3 m × 0·3 m and a 0·15-ha extent. The upscaled model simulates a 2500-ha paddock with 0·15-ha resolution and is enriched with additional rules that describe heterogeneity in the local stocking rate at the paddock scale. We obtained 24 transition matrices that governed the upscaled model for different combinations of stocking rates and annual precipitation. The upscaled model produced excellent predictions for the long-term dynamics, but as expected, it did not fully capture the interannual dynamics of the original model. Rules for heterogeneity in the local stocking rate allowed for emergence of realistic vegetation patterns as commonly observed for water points in arid rangelands. Our general nonparametric upscaling approach can be applied to a wide range of stochastic simulation models in which the dynamics can be approximated by a set of states, transitions and external drivers. Because estimation of the transition probabilities can be done parallel, our approach can be applied to a wide range of models of intermediate complexity. Our approach closes a gap in our ability to scale up from small scales, where the biological knowledge is available, to larger scales that are relevant for management.
Palabras clave: AGENT-BASED MODELS , COMPLEX SYSTEMS , GRAPH THEORY , MARKOV CHAINS , META-MODELS , RANGELANDS , SPATIALLY EXPLICIT MODELS , STATE-TRANSITIONS MODELS , SUCCESSION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.735Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/185354
DOI: http://dx.doi.org/10.1111/2041-210X.12464
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Cipriotti, Pablo Ariel; Wiegand, Thorsten; Pütz, Sandro; Bartoloni, Norberto Jose; Paruelo, José; Non-parametric upscaling of stochastic simulation models using transition matrices.; Wiley; Methods in Ecology and Evolution; 7; 3; 3-2016; 313-322
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Modeling Water Yield: Assessing the Role of Site and Region-Specific Attributes in Determining Model Performance of the InVEST Seasonal Water Yield Model
    Scordo, Facundo ; Lavender, Thomas Michael; Seitz, Carina ; Perillo, Vanesa Liliana ; Rusak, James A.; Piccolo, Maria Cintia ; Perillo, Gerardo Miguel E. (MDPI, 2018-10-23)
  • Artículo La utilización del MET (model evaluation tool) para la verificación de los pronósticos del modelo wrf-arw/shn-smn durante la primavera de 2011
    Charó, Gisela Daniela ; Collini, Estela Angela; Dillon, María Eugenia (Centro Argentino de Meteorólogos, 2014-12)
  • Artículo Ponderaciones de la información familiar e individual en modelos animales y BLUP: 1. Modelos con grupos genéticos, 2. Modelos con paternidad incierta
    Vitezica, Zulma G.; Cantet, Rodolfo Juan Carlos (Asociación Interprofesional para el Desarrollo Agrario, 2003-12)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES