Mostrar el registro sencillo del ítem

dc.contributor.author
Cipriotti, Pablo Ariel  
dc.contributor.author
Wiegand, Thorsten  
dc.contributor.author
Pütz, Sandro  
dc.contributor.author
Bartoloni, Norberto Jose  
dc.contributor.author
Paruelo, José  
dc.date.available
2023-01-24T11:17:07Z  
dc.date.issued
2016-03  
dc.identifier.citation
Cipriotti, Pablo Ariel; Wiegand, Thorsten; Pütz, Sandro; Bartoloni, Norberto Jose; Paruelo, José; Non-parametric upscaling of stochastic simulation models using transition matrices.; Wiley; Methods in Ecology and Evolution; 7; 3; 3-2016; 313-322  
dc.identifier.issn
2041-210X  
dc.identifier.uri
http://hdl.handle.net/11336/185354  
dc.description.abstract
The problem of scaling up from tractable, small-scale observations and experiments to prediction of large-scale patterns is at the core of ecological theory and application, and one of the central problems in ecology. We present and test a general nonparametric framework to upscale spatially explicit and stochastic simulation models. The idea is to design a state space, defined by the important state variables of the small-scale model, and to divide it into a finite number of discrete states. Transition probabilities are then tallied by monitoring extensive simulation runs of the small-scale model, covering the entire range of initial conditions, states and external drivers that may occur for the desired application. We exemplify our approach by upscaling an individual-based model that simulates the spatiotemporal dynamics of Festuca pallescens steppes under sheep grazing in Western Patagonia, Argentina, with a spatial resolution of 0·3 m × 0·3 m and a 0·15-ha extent. The upscaled model simulates a 2500-ha paddock with 0·15-ha resolution and is enriched with additional rules that describe heterogeneity in the local stocking rate at the paddock scale. We obtained 24 transition matrices that governed the upscaled model for different combinations of stocking rates and annual precipitation. The upscaled model produced excellent predictions for the long-term dynamics, but as expected, it did not fully capture the interannual dynamics of the original model. Rules for heterogeneity in the local stocking rate allowed for emergence of realistic vegetation patterns as commonly observed for water points in arid rangelands. Our general nonparametric upscaling approach can be applied to a wide range of stochastic simulation models in which the dynamics can be approximated by a set of states, transitions and external drivers. Because estimation of the transition probabilities can be done parallel, our approach can be applied to a wide range of models of intermediate complexity. Our approach closes a gap in our ability to scale up from small scales, where the biological knowledge is available, to larger scales that are relevant for management.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AGENT-BASED MODELS  
dc.subject
COMPLEX SYSTEMS  
dc.subject
GRAPH THEORY  
dc.subject
MARKOV CHAINS  
dc.subject
META-MODELS  
dc.subject
RANGELANDS  
dc.subject
SPATIALLY EXPLICIT MODELS  
dc.subject
STATE-TRANSITIONS MODELS  
dc.subject
SUCCESSION  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
Otras Ciencias Agrícolas  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Non-parametric upscaling of stochastic simulation models using transition matrices.  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-01-24T10:27:35Z  
dc.journal.volume
7  
dc.journal.number
3  
dc.journal.pagination
313-322  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Cipriotti, Pablo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Wiegand, Thorsten. Helmholtz Centre for Environmental Research; Alemania  
dc.description.fil
Fil: Pütz, Sandro. Helmholtz Centre for Environmental Research; Alemania  
dc.description.fil
Fil: Bartoloni, Norberto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Paruelo, José. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.journal.title
Methods in Ecology and Evolution  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/2041-210X.12464