Artículo
A General Purpose Formulation for Nonsmooth Dynamics with Finite Rotations: Application to the Woodpecker Toy
Cosimo, Alejandro
; Cavalieri, Federico José
; Galvez, Marcelo Javier; Cardona, Alberto
; Brüls, Olivier
Fecha de publicación:
12/2020
Editorial:
American Society of Mechanical Engineers
Revista:
Journal of Computational and Nonlinear Dynamics
ISSN:
1555-1415
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this work is to extend the finite element multibody dynamics approach to problems involving frictional contacts and impacts. The nonsmooth generalized-α (NSGA) scheme is adopted, which imposes bilateral and unilateral constraints both at position and velocity levels avoiding drift phenomena. This scheme can be implemented in a general purpose simulation code with limited modifications of pre-existing elements. The study of the woodpecker toy dynamics sets up a good example to show the capabilities of the NSGA scheme within the context of a general finite element framework. This example has already been studied by many authors who generally adopted a model with a minimal set of coordinates and small rotations. It is shown that good results are obtained using a general purpose finite element code for multibody dynamics, in which the equations of motion are assembled automatically and large rotations are easily taken into account. In addition, comparing results between different models of the woodpecker toy, the importance of modeling large rotations and the horizontal displacement of the woodpecker's sleeve is emphasized.
Palabras clave:
NONSMOOTH DYNAMICS
,
WOODPECKER DYNAMICS
,
FLEXIBLE MULTIBODY DYNAMICS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Cosimo, Alejandro; Cavalieri, Federico José; Galvez, Marcelo Javier; Cardona, Alberto; Brüls, Olivier; A General Purpose Formulation for Nonsmooth Dynamics with Finite Rotations: Application to the Woodpecker Toy; American Society of Mechanical Engineers; Journal of Computational and Nonlinear Dynamics; 16; 3; 12-2020; 1-9
Compartir
Altmétricas