Mostrar el registro sencillo del ítem

dc.contributor.author
López, Leonardo  
dc.contributor.author
Fernández, Maximiliano Andrés  
dc.contributor.author
Giovanini, Leonardo Luis  
dc.date.available
2023-01-23T16:33:43Z  
dc.date.issued
2020-01  
dc.identifier.citation
López, Leonardo; Fernández, Maximiliano Andrés; Giovanini, Leonardo Luis; Influenza epidemic model using dynamic social networks of individuals with cognition maps; Elsevier; MethodsX; 7; 1-2020; 1-14  
dc.identifier.uri
http://hdl.handle.net/11336/185298  
dc.description.abstract
The dynamic of infectious disease is the result of the interplay between the spread of pathogens and individuals’ behaviour. This interaction can be modelled through a network of interdependent dynamical blocks with multiple feedback connections. Epidemic outbreaks trigger behavioural responses, at the group and individual levels, which in turn influence the development of the epidemic. The interactions can be modelled through adaptive temporal networks whose nodes represent the individuals interconnected. Here we introduce an individual-based model where the behaviour of each agent is governed by its appreciation of the environment and external stimulus and its appreciation of its environment. It is built as a combination of three interacting blocks: (i) individual behaviour, (ii) social behaviour and (iii) health state. • Here, we introduce an individual-based model. • Individual's behaviour is modelled through the interplay of information of its health state as well as its neighbourhood (infected and recovered neighbours) and global epidemic situation; • Social behaviour is modelled through contact network that aggregates the behaviour and health state of the individuals; • The proposed model allows to use a wide range of alternatives for modelling each of these blocks, that provides flexibility to select the most adequate tool to model each component of the framework.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
CELLULAR AUTOMATA  
dc.subject
FUZZY-COGNITIVE MAPS  
dc.subject
INDIVIDUAL-BASED MODEL  
dc.subject
INDIVIDUAL-BASED MODEL USING ADAPTIVE NETWORK FOR EPIDEMIC MODELLING  
dc.subject
INFECTIOUS DISEASE  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Influenza epidemic model using dynamic social networks of individuals with cognition maps  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-01-23T00:35:30Z  
dc.identifier.eissn
2215-0161  
dc.journal.volume
7  
dc.journal.pagination
1-14  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: López, Leonardo. Instituto de Salud Global de Barcelona; España  
dc.description.fil
Fil: Fernández, Maximiliano Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
MethodsX  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2215016120302508  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mex.2020.101030