Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Influenza epidemic model using dynamic social networks of individuals with cognition maps

López, Leonardo; Fernández, Maximiliano AndrésIcon ; Giovanini, Leonardo LuisIcon
Fecha de publicación: 01/2020
Editorial: Elsevier
Revista: MethodsX
e-ISSN: 2215-0161
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

The dynamic of infectious disease is the result of the interplay between the spread of pathogens and individuals’ behaviour. This interaction can be modelled through a network of interdependent dynamical blocks with multiple feedback connections. Epidemic outbreaks trigger behavioural responses, at the group and individual levels, which in turn influence the development of the epidemic. The interactions can be modelled through adaptive temporal networks whose nodes represent the individuals interconnected. Here we introduce an individual-based model where the behaviour of each agent is governed by its appreciation of the environment and external stimulus and its appreciation of its environment. It is built as a combination of three interacting blocks: (i) individual behaviour, (ii) social behaviour and (iii) health state. • Here, we introduce an individual-based model. • Individual's behaviour is modelled through the interplay of information of its health state as well as its neighbourhood (infected and recovered neighbours) and global epidemic situation; • Social behaviour is modelled through contact network that aggregates the behaviour and health state of the individuals; • The proposed model allows to use a wide range of alternatives for modelling each of these blocks, that provides flexibility to select the most adequate tool to model each component of the framework.
Palabras clave: CELLULAR AUTOMATA , FUZZY-COGNITIVE MAPS , INDIVIDUAL-BASED MODEL , INDIVIDUAL-BASED MODEL USING ADAPTIVE NETWORK FOR EPIDEMIC MODELLING , INFECTIOUS DISEASE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.744Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/185298
URL: https://linkinghub.elsevier.com/retrieve/pii/S2215016120302508
DOI: http://dx.doi.org/10.1016/j.mex.2020.101030
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
López, Leonardo; Fernández, Maximiliano Andrés; Giovanini, Leonardo Luis; Influenza epidemic model using dynamic social networks of individuals with cognition maps; Elsevier; MethodsX; 7; 1-2020; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES