Mostrar el registro sencillo del ítem

dc.contributor.author
El Sayed Hussein Jomaa, Mohamad  
dc.contributor.author
Van Bogaert, Patrick  
dc.contributor.author
Jrad, Nisrine  
dc.contributor.author
Kadish, Navah Ester  
dc.contributor.author
Japaridze, Natia  
dc.contributor.author
Siniatchkin, Michael  
dc.contributor.author
Colominas, Marcelo Alejandro  
dc.contributor.author
Humeau Heurtier, Anne  
dc.date.available
2023-01-23T15:10:30Z  
dc.date.issued
2019-07  
dc.identifier.citation
El Sayed Hussein Jomaa, Mohamad; Van Bogaert, Patrick; Jrad, Nisrine; Kadish, Navah Ester; Japaridze, Natia; et al.; Multivariate improved weighted multiscale permutation entropy and its application on EEG data; Elsevier; Biomedical Signal Processing and Control; 52; 7-2019; 420-428  
dc.identifier.issn
1746-8094  
dc.identifier.uri
http://hdl.handle.net/11336/185280  
dc.description.abstract
This paper introduces an entropy based method that measures complexity in non-stationary multivariate signals. This method, called Mutivariate Improved Weighted Multiscale Permutation Entropy (mvIWMPE), has two main advantages: (i) it shows lower variance for the results when applied on a wide range of multivariate signals; (ii) it has good accuracy quantifying complexity of different recorded states in signals and hence discriminating them. mvIWMPE is based on two previously introduced permutation entropy algorithms, Improved Multiscale Permutation Entropy (IMPE) and Multivariate Weighted Multiscale Permutation Entropy (mvWMPE). It combines the concept of coarse graining from IMPE and the introduction of the weight of amplitudes of the signals from mvWMPE. mvIWMPE was validated on both synthetic and human electroencephalographic (EEG) signals. Several synthetic signals were simulated: mixtures of white Gaussian noise (WGN) and pink noise, chaotic and convergent Lorenz system signals, stochastic and deterministic signals. As for real signals, resting-state EEG recorded in healthy and epileptic children during eyes closed and eyes open sessions were analyzed. Our method was compared to multivariate multiscale, multivariate weighted multiscale and multivariate improved multiscale permutation entropy methods. Performance on synthetic as well as on EEG signals showed more undeviating results and higher ability for mvIWMPE discriminating different states of signals (chaotic vs convergent, WGN vs pink noise, stochastic vs deterministic simulated signals, and eyes open vs eyes closed EEG signals). We herein proposed an efficient method to measure the complexity of multivariate non-stationary signals. Experimental results showed the accuracy and the robustness (in terms of variance) of the method.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ALPHA RHYTHM  
dc.subject
ELECTROENCEPHALOGRAPHY (EEG)  
dc.subject
ENTROPY  
dc.subject
MULTISCALE  
dc.subject
MULTIVARIATE  
dc.subject
RESTING-STATE  
dc.subject
SIGNAL COMPLEXITY  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Multivariate improved weighted multiscale permutation entropy and its application on EEG data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-01-23T00:39:40Z  
dc.journal.volume
52  
dc.journal.pagination
420-428  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: El Sayed Hussein Jomaa, Mohamad. No especifíca;  
dc.description.fil
Fil: Van Bogaert, Patrick. No especifíca;  
dc.description.fil
Fil: Jrad, Nisrine. No especifíca;  
dc.description.fil
Fil: Kadish, Navah Ester. University Hospital of Pediatric Neurology; Alemania  
dc.description.fil
Fil: Japaridze, Natia. University Hospital of Pediatric Neurology; Alemania  
dc.description.fil
Fil: Siniatchkin, Michael. University of Kiel; Alemania  
dc.description.fil
Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.description.fil
Fil: Humeau Heurtier, Anne. No especifíca;  
dc.journal.title
Biomedical Signal Processing and Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bspc.2018.08.004