Mostrar el registro sencillo del ítem
dc.contributor.author
El Sayed Hussein Jomaa, Mohamad
dc.contributor.author
Van Bogaert, Patrick
dc.contributor.author
Jrad, Nisrine
dc.contributor.author
Kadish, Navah Ester
dc.contributor.author
Japaridze, Natia
dc.contributor.author
Siniatchkin, Michael
dc.contributor.author
Colominas, Marcelo Alejandro

dc.contributor.author
Humeau Heurtier, Anne
dc.date.available
2023-01-23T15:10:30Z
dc.date.issued
2019-07
dc.identifier.citation
El Sayed Hussein Jomaa, Mohamad; Van Bogaert, Patrick; Jrad, Nisrine; Kadish, Navah Ester; Japaridze, Natia; et al.; Multivariate improved weighted multiscale permutation entropy and its application on EEG data; Elsevier; Biomedical Signal Processing and Control; 52; 7-2019; 420-428
dc.identifier.issn
1746-8094
dc.identifier.uri
http://hdl.handle.net/11336/185280
dc.description.abstract
This paper introduces an entropy based method that measures complexity in non-stationary multivariate signals. This method, called Mutivariate Improved Weighted Multiscale Permutation Entropy (mvIWMPE), has two main advantages: (i) it shows lower variance for the results when applied on a wide range of multivariate signals; (ii) it has good accuracy quantifying complexity of different recorded states in signals and hence discriminating them. mvIWMPE is based on two previously introduced permutation entropy algorithms, Improved Multiscale Permutation Entropy (IMPE) and Multivariate Weighted Multiscale Permutation Entropy (mvWMPE). It combines the concept of coarse graining from IMPE and the introduction of the weight of amplitudes of the signals from mvWMPE. mvIWMPE was validated on both synthetic and human electroencephalographic (EEG) signals. Several synthetic signals were simulated: mixtures of white Gaussian noise (WGN) and pink noise, chaotic and convergent Lorenz system signals, stochastic and deterministic signals. As for real signals, resting-state EEG recorded in healthy and epileptic children during eyes closed and eyes open sessions were analyzed. Our method was compared to multivariate multiscale, multivariate weighted multiscale and multivariate improved multiscale permutation entropy methods. Performance on synthetic as well as on EEG signals showed more undeviating results and higher ability for mvIWMPE discriminating different states of signals (chaotic vs convergent, WGN vs pink noise, stochastic vs deterministic simulated signals, and eyes open vs eyes closed EEG signals). We herein proposed an efficient method to measure the complexity of multivariate non-stationary signals. Experimental results showed the accuracy and the robustness (in terms of variance) of the method.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ALPHA RHYTHM
dc.subject
ELECTROENCEPHALOGRAPHY (EEG)
dc.subject
ENTROPY
dc.subject
MULTISCALE
dc.subject
MULTIVARIATE
dc.subject
RESTING-STATE
dc.subject
SIGNAL COMPLEXITY
dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Multivariate improved weighted multiscale permutation entropy and its application on EEG data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-01-23T00:39:40Z
dc.journal.volume
52
dc.journal.pagination
420-428
dc.journal.pais
Países Bajos

dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: El Sayed Hussein Jomaa, Mohamad. No especifíca;
dc.description.fil
Fil: Van Bogaert, Patrick. No especifíca;
dc.description.fil
Fil: Jrad, Nisrine. No especifíca;
dc.description.fil
Fil: Kadish, Navah Ester. University Hospital of Pediatric Neurology; Alemania
dc.description.fil
Fil: Japaridze, Natia. University Hospital of Pediatric Neurology; Alemania
dc.description.fil
Fil: Siniatchkin, Michael. University of Kiel; Alemania
dc.description.fil
Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.description.fil
Fil: Humeau Heurtier, Anne. No especifíca;
dc.journal.title
Biomedical Signal Processing and Control

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bspc.2018.08.004
Archivos asociados