Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multivariate improved weighted multiscale permutation entropy and its application on EEG data

El Sayed Hussein Jomaa, Mohamad; Van Bogaert, Patrick; Jrad, Nisrine; Kadish, Navah Ester; Japaridze, Natia; Siniatchkin, Michael; Colominas, Marcelo AlejandroIcon ; Humeau Heurtier, Anne
Fecha de publicación: 07/2019
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

This paper introduces an entropy based method that measures complexity in non-stationary multivariate signals. This method, called Mutivariate Improved Weighted Multiscale Permutation Entropy (mvIWMPE), has two main advantages: (i) it shows lower variance for the results when applied on a wide range of multivariate signals; (ii) it has good accuracy quantifying complexity of different recorded states in signals and hence discriminating them. mvIWMPE is based on two previously introduced permutation entropy algorithms, Improved Multiscale Permutation Entropy (IMPE) and Multivariate Weighted Multiscale Permutation Entropy (mvWMPE). It combines the concept of coarse graining from IMPE and the introduction of the weight of amplitudes of the signals from mvWMPE. mvIWMPE was validated on both synthetic and human electroencephalographic (EEG) signals. Several synthetic signals were simulated: mixtures of white Gaussian noise (WGN) and pink noise, chaotic and convergent Lorenz system signals, stochastic and deterministic signals. As for real signals, resting-state EEG recorded in healthy and epileptic children during eyes closed and eyes open sessions were analyzed. Our method was compared to multivariate multiscale, multivariate weighted multiscale and multivariate improved multiscale permutation entropy methods. Performance on synthetic as well as on EEG signals showed more undeviating results and higher ability for mvIWMPE discriminating different states of signals (chaotic vs convergent, WGN vs pink noise, stochastic vs deterministic simulated signals, and eyes open vs eyes closed EEG signals). We herein proposed an efficient method to measure the complexity of multivariate non-stationary signals. Experimental results showed the accuracy and the robustness (in terms of variance) of the method.
Palabras clave: ALPHA RHYTHM , ELECTROENCEPHALOGRAPHY (EEG) , ENTROPY , MULTISCALE , MULTIVARIATE , RESTING-STATE , SIGNAL COMPLEXITY
Ver el registro completo
 
Archivos asociados
Tamaño: 2.445Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/185280
DOI: http://dx.doi.org/10.1016/j.bspc.2018.08.004
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
El Sayed Hussein Jomaa, Mohamad; Van Bogaert, Patrick; Jrad, Nisrine; Kadish, Navah Ester; Japaridze, Natia; et al.; Multivariate improved weighted multiscale permutation entropy and its application on EEG data; Elsevier; Biomedical Signal Processing and Control; 52; 7-2019; 420-428
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES