Mostrar el registro sencillo del ítem

dc.contributor.author
Xue, Wufeng  
dc.contributor.author
Li, Jiahui  
dc.contributor.author
Hu, Zhiqiang  
dc.contributor.author
Kerfoot, Eric  
dc.contributor.author
Clough, James  
dc.contributor.author
Oksuz, Ilkay  
dc.contributor.author
Xu, Hao  
dc.contributor.author
Grau, Vicente  
dc.contributor.author
Guo, Fumin  
dc.contributor.author
Ng, Matthew  
dc.contributor.author
Li, Xiang  
dc.contributor.author
Li, Quanzheng  
dc.contributor.author
Liu, Lihong  
dc.contributor.author
Ma, Jin  
dc.contributor.author
Grinias, Elias  
dc.contributor.author
Tziritas, Georgios  
dc.contributor.author
Yan, Wenjun  
dc.contributor.author
Atehortua, Angelica  
dc.contributor.author
Garreau, Mireille  
dc.contributor.author
Jang, Yeonggul  
dc.contributor.author
Debus, Alejandro  
dc.contributor.author
Ferrante, Enzo  
dc.contributor.author
Yang, Guanyu  
dc.contributor.author
Hua, Tiancong  
dc.contributor.author
Li, Shuo  
dc.date.available
2023-01-12T09:29:44Z  
dc.date.issued
2021-09  
dc.identifier.citation
Xue, Wufeng; Li, Jiahui; Hu, Zhiqiang; Kerfoot, Eric; Clough, James; et al.; Left Ventricle Quantification Challenge: A Comprehensive Comparison and Evaluation of Segmentation and Regression for Mid-Ventricular Short-Axis Cardiac MR Data; Institute of Electrical and Electronics Engineers; IEEE Journal of Biomedical and Health Informatics; 25; 9; 9-2021; 3541-3553  
dc.identifier.issn
2168-2194  
dc.identifier.uri
http://hdl.handle.net/11336/184438  
dc.description.abstract
Automatic quantification of the left ventricle (LV) from cardiac magnetic resonance (CMR) images plays an important role in making the diagnosis procedure efficient, reliable, and alleviating the laborious reading work for physicians. Considerable efforts have been devoted to LV quantification using different strategies that include segmentation-based (SG) methods and the recent direct regression (DR) methods. Although both SG and DR methods have obtained great success for the task, a systematic platform to benchmark them remains absent because of differences in label information during model learning. In this paper, we conducted an unbiased evaluation and comparison of cardiac LV quantification methods that were submitted to the Left Ventricle Quantification (LVQuan) challenge, which was held in conjunction with the Statistical Atlases and Computational Modeling of the Heart (STACOM) workshop at the MICCAI 2018. The challenge was targeted at the quantification of 1) areas of LV cavity and myocardium, 2) dimensions of the LV cavity, 3) regional wall thicknesses (RWT), and 4) the cardiac phase, from mid-ventricle short-axis CMR images. First, we constructed a public quantification dataset Cardiac-DIG with ground truth labels for both the myocardium mask and these quantification targets across the entire cardiac cycle. Then, the key techniques employed by each submission were described. Next, quantitative validation of these submissions were conducted with the constructed dataset. The evaluation results revealed that both SG and DR methods can offer good LV quantification performance, even though DR methods do not require densely labeled masks for supervision. Among the 12 submissions, the DR method LDAMT offered the best performance, with a mean estimation error of 301 mm$^2$ for the two areas, 2.15 mm for the cavity dimensions, 2.03 mm for RWTs, and a 9.5% error rate for the cardiac phase classification. Three of the SG methods also delivered comparable performances. Finally, we discussed the advantages and disadvantages of SG and DR methods, as well as the unsolved problems in automatic cardiac quantification for clinical practice applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP NEURAL NETWORK  
dc.subject
LEFT VENTRICLE  
dc.subject
QUANTIFICATION  
dc.subject
REGRESSION  
dc.subject
SEGMENTATION  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Left Ventricle Quantification Challenge: A Comprehensive Comparison and Evaluation of Segmentation and Regression for Mid-Ventricular Short-Axis Cardiac MR Data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-28T19:19:08Z  
dc.identifier.eissn
2168-2208  
dc.journal.volume
25  
dc.journal.number
9  
dc.journal.pagination
3541-3553  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Xue, Wufeng. Shenzhen University; China. Western University; Canadá  
dc.description.fil
Fil: Li, Jiahui. Beijing University Of Posts And Telecommunications; China  
dc.description.fil
Fil: Hu, Zhiqiang. Peking University; China  
dc.description.fil
Fil: Kerfoot, Eric. King's College; Reino Unido  
dc.description.fil
Fil: Clough, James. King's College; Reino Unido  
dc.description.fil
Fil: Oksuz, Ilkay. King's College; Reino Unido  
dc.description.fil
Fil: Xu, Hao. University of Oxford; Reino Unido  
dc.description.fil
Fil: Grau, Vicente. University of Oxford; Reino Unido  
dc.description.fil
Fil: Guo, Fumin. University of Toronto; Canadá  
dc.description.fil
Fil: Ng, Matthew. University of Toronto; Canadá  
dc.description.fil
Fil: Li, Xiang. Massachusetts General Hospital; Estados Unidos  
dc.description.fil
Fil: Li, Quanzheng. Massachusetts General Hospital; Estados Unidos  
dc.description.fil
Fil: Liu, Lihong. No especifíca;  
dc.description.fil
Fil: Ma, Jin. No especifíca;  
dc.description.fil
Fil: Grinias, Elias. No especifíca;  
dc.description.fil
Fil: Tziritas, Georgios. No especifíca;  
dc.description.fil
Fil: Yan, Wenjun. Fudan University; China  
dc.description.fil
Fil: Atehortua, Angelica. No especifíca;  
dc.description.fil
Fil: Garreau, Mireille. No especifíca;  
dc.description.fil
Fil: Jang, Yeonggul. No especifíca;  
dc.description.fil
Fil: Debus, Alejandro. No especifíca;  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Yang, Guanyu. Southeast University; China  
dc.description.fil
Fil: Hua, Tiancong. Southeast University; China  
dc.description.fil
Fil: Li, Shuo. Western University; Canadá  
dc.journal.title
IEEE Journal of Biomedical and Health Informatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/JBHI.2021.3064353