Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Left Ventricle Quantification Challenge: A Comprehensive Comparison and Evaluation of Segmentation and Regression for Mid-Ventricular Short-Axis Cardiac MR Data

Xue, Wufeng; Li, Jiahui; Hu, Zhiqiang; Kerfoot, Eric; Clough, James; Oksuz, Ilkay; Xu, Hao; Grau, Vicente; Guo, Fumin; Ng, Matthew; Li, Xiang; Li, Quanzheng; Liu, Lihong; Ma, Jin; Grinias, Elias; Tziritas, Georgios; Yan, Wenjun; Atehortua, Angelica; Garreau, Mireille; Jang, Yeonggul; Debus, Alejandro; Ferrante, EnzoIcon ; Yang, Guanyu; Hua, Tiancong; Li, Shuo
Fecha de publicación: 09/2021
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Journal of Biomedical and Health Informatics
ISSN: 2168-2194
e-ISSN: 2168-2208
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Automatic quantification of the left ventricle (LV) from cardiac magnetic resonance (CMR) images plays an important role in making the diagnosis procedure efficient, reliable, and alleviating the laborious reading work for physicians. Considerable efforts have been devoted to LV quantification using different strategies that include segmentation-based (SG) methods and the recent direct regression (DR) methods. Although both SG and DR methods have obtained great success for the task, a systematic platform to benchmark them remains absent because of differences in label information during model learning. In this paper, we conducted an unbiased evaluation and comparison of cardiac LV quantification methods that were submitted to the Left Ventricle Quantification (LVQuan) challenge, which was held in conjunction with the Statistical Atlases and Computational Modeling of the Heart (STACOM) workshop at the MICCAI 2018. The challenge was targeted at the quantification of 1) areas of LV cavity and myocardium, 2) dimensions of the LV cavity, 3) regional wall thicknesses (RWT), and 4) the cardiac phase, from mid-ventricle short-axis CMR images. First, we constructed a public quantification dataset Cardiac-DIG with ground truth labels for both the myocardium mask and these quantification targets across the entire cardiac cycle. Then, the key techniques employed by each submission were described. Next, quantitative validation of these submissions were conducted with the constructed dataset. The evaluation results revealed that both SG and DR methods can offer good LV quantification performance, even though DR methods do not require densely labeled masks for supervision. Among the 12 submissions, the DR method LDAMT offered the best performance, with a mean estimation error of 301 mm$^2$ for the two areas, 2.15 mm for the cavity dimensions, 2.03 mm for RWTs, and a 9.5% error rate for the cardiac phase classification. Three of the SG methods also delivered comparable performances. Finally, we discussed the advantages and disadvantages of SG and DR methods, as well as the unsolved problems in automatic cardiac quantification for clinical practice applications.
Palabras clave: DEEP NEURAL NETWORK , LEFT VENTRICLE , QUANTIFICATION , REGRESSION , SEGMENTATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.556Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184438
DOI: http://dx.doi.org/10.1109/JBHI.2021.3064353
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Xue, Wufeng; Li, Jiahui; Hu, Zhiqiang; Kerfoot, Eric; Clough, James; et al.; Left Ventricle Quantification Challenge: A Comprehensive Comparison and Evaluation of Segmentation and Regression for Mid-Ventricular Short-Axis Cardiac MR Data; Institute of Electrical and Electronics Engineers; IEEE Journal of Biomedical and Health Informatics; 25; 9; 9-2021; 3541-3553
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES