Mostrar el registro sencillo del ítem

dc.contributor.author
Edera, Alejandro  
dc.contributor.author
Small, Ian David  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Sánchez Puerta, María Virginia  
dc.date.available
2023-01-10T18:13:52Z  
dc.date.issued
2021-07  
dc.identifier.citation
Edera, Alejandro; Small, Ian David; Milone, Diego Humberto; Sánchez Puerta, María Virginia; Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 136; 104682; 7-2021; 1-6  
dc.identifier.issn
0010-4825  
dc.identifier.uri
http://hdl.handle.net/11336/184215  
dc.description.abstract
In land plant mitochondria, C-to-U RNA editing converts cytidines into uridines at highly specific RNA positions called editing sites. This editing step is essential for the correct functioning of mitochondrial proteins. When using sequence homology information, edited positions can be computationally predicted with high precision. However, predictions based on the sequence contexts of such edited positions often result in lower precision, which is limiting further advances on novel genetic engineering techniques for RNA regulation. Here, a deep convolutional neural network called Deepred-Mt is proposed. It predicts C-to-U editing events based on the 40 nucleotides flanking a given cytidine. Unlike existing methods, Deepred-Mt was optimized by using editing extent information, novel strategies of data augmentation, and a large-scale training dataset, constructed with deep RNA sequencing data of 21 plant mitochondrial genomes. In comparison to predictive methods based on sequence homology, Deepred-Mt attains significantly better predictive performance, in terms of average precision as well as F1 score. In addition, our approach is able to recognize well-known sequence motifs linked to RNA editing, and shows that the local RNA structure surrounding editing sites may be a relevant factor regulating their editing. These results demonstrate that Deepred-Mt is an effective tool for predicting C-to-U RNA editing in plant mitochondria. Source code, datasets, and detailed use cases are freely available at https://github.com/aedera/deepredmt.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
C-TO-U RNA EDITING  
dc.subject
CONVOLUTIONAL NEURAL NETWORKS  
dc.subject
LAND PLANTS  
dc.subject
MITOCHONDRIAL GENOMES  
dc.subject
REPRESENTATION LEARNING  
dc.subject
SEQUENCE CLASSIFICATION  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-28T19:19:19Z  
dc.journal.volume
136  
dc.journal.number
104682  
dc.journal.pagination
1-6  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Small, Ian David. University of Western Australia; Australia  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Sánchez Puerta, María Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Biología Agrícola de Mendoza. Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Instituto de Biología Agrícola de Mendoza; Argentina  
dc.journal.title
Computers In Biology And Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compbiomed.2021.104682  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0010482521004765