Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria

Edera, AlejandroIcon ; Small, Ian David; Milone, Diego HumbertoIcon ; Sánchez Puerta, María VirginiaIcon
Fecha de publicación: 07/2021
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers In Biology And Medicine
ISSN: 0010-4825
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

In land plant mitochondria, C-to-U RNA editing converts cytidines into uridines at highly specific RNA positions called editing sites. This editing step is essential for the correct functioning of mitochondrial proteins. When using sequence homology information, edited positions can be computationally predicted with high precision. However, predictions based on the sequence contexts of such edited positions often result in lower precision, which is limiting further advances on novel genetic engineering techniques for RNA regulation. Here, a deep convolutional neural network called Deepred-Mt is proposed. It predicts C-to-U editing events based on the 40 nucleotides flanking a given cytidine. Unlike existing methods, Deepred-Mt was optimized by using editing extent information, novel strategies of data augmentation, and a large-scale training dataset, constructed with deep RNA sequencing data of 21 plant mitochondrial genomes. In comparison to predictive methods based on sequence homology, Deepred-Mt attains significantly better predictive performance, in terms of average precision as well as F1 score. In addition, our approach is able to recognize well-known sequence motifs linked to RNA editing, and shows that the local RNA structure surrounding editing sites may be a relevant factor regulating their editing. These results demonstrate that Deepred-Mt is an effective tool for predicting C-to-U RNA editing in plant mitochondria. Source code, datasets, and detailed use cases are freely available at https://github.com/aedera/deepredmt.
Palabras clave: C-TO-U RNA EDITING , CONVOLUTIONAL NEURAL NETWORKS , LAND PLANTS , MITOCHONDRIAL GENOMES , REPRESENTATION LEARNING , SEQUENCE CLASSIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 1.003Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184215
DOI: http://dx.doi.org/10.1016/j.compbiomed.2021.104682
URL: https://www.sciencedirect.com/science/article/pii/S0010482521004765
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Edera, Alejandro; Small, Ian David; Milone, Diego Humberto; Sánchez Puerta, María Virginia; Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria; Pergamon-Elsevier Science Ltd; Computers In Biology And Medicine; 136; 104682; 7-2021; 1-6
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 4
Descargas: 0

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES