Mostrar el registro sencillo del ítem
dc.contributor.author
Giannini Kurina, Franca
dc.contributor.author
Hang, Susana
dc.contributor.author
Rampoldi, Edgar Ariel
dc.contributor.author
Paccioretti, Pablo Ariel
dc.contributor.author
Balzarini, Monica Graciela
dc.date.available
2023-01-10T13:50:54Z
dc.date.issued
2021-05
dc.identifier.citation
Giannini Kurina, Franca; Hang, Susana; Rampoldi, Edgar Ariel; Paccioretti, Pablo Ariel; Balzarini, Monica Graciela; Unveiling spatial variability in herbicide soil sorption using Bayesian digital mapping; American Society of Agronomy; Journal of Environmental Quality; 50; 4; 5-2021; 934-944
dc.identifier.issn
0047-2425
dc.identifier.uri
http://hdl.handle.net/11336/184148
dc.description.abstract
Regional mapping herbicide sorption to soil is essential for risk assessment. However, conducting analytical quantification of adsorption coefficient (Kd) in large-scale studies is too costly; therefore, a research question arises on goodness of Kd spatial prediction from sampling. The application of a spatial Bayesian regression (BR) is a newer technique in agricultural and natural resources sciences that allows converting spatially discrete samples into maps covering continuous spatial domains. The objective of this work was to unveil herbicide sorption to soil at a landscape scale by developing a predictive BR model. We integrated a large set of ancillary soil and climate covariables from sites with Kd measurements into a spatial mixed model including site random effects. The models were fitted using glyphosate and atrazine Kds, determined in 80 and 120 sites, respectively, from central Argentina. For model assessment, measurements of global and point-wise prediction errors were obtained by cross-validation; residual variability was estimated by bootstrap to compare BR with regression kriging. Results showed that the BR spatial predictions outperformed regression kriging. The glyphosate Kd model (root mean square prediction error, 13% of the mean) included aluminum oxides, pH, and clay content, whereas the atrazine Kd model strongly depended on soil organic carbon and clay and on climatic variables related to water availability (root mean square prediction error, 27%). Spatial modeling of a complex edaphic process as herbicide sorption to soils enhanced environmental interpretations. An efficient approach for spatial mapping provides a modern perspective on the study of herbicide sorption to soil.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Society of Agronomy
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bayesian spatial regression
dc.subject
Atrazine
dc.subject
Glyphosate
dc.subject.classification
Ciencias del Suelo
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Unveiling spatial variability in herbicide soil sorption using Bayesian digital mapping
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T15:15:12Z
dc.journal.volume
50
dc.journal.number
4
dc.journal.pagination
934-944
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Giannini Kurina, Franca. Universidad Nacional de Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
dc.description.fil
Fil: Hang, Susana. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: Rampoldi, Edgar Ariel. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
dc.description.fil
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina
dc.journal.title
Journal of Environmental Quality
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/jeq2.20254
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://acsess.onlinelibrary.wiley.com/doi/10.1002/jeq2.20254
Archivos asociados