Mostrar el registro sencillo del ítem

dc.contributor.author
Giannini Kurina, Franca  
dc.contributor.author
Hang, Susana  
dc.contributor.author
Rampoldi, Edgar Ariel  
dc.contributor.author
Paccioretti, Pablo Ariel  
dc.contributor.author
Balzarini, Monica Graciela  
dc.date.available
2023-01-10T13:50:54Z  
dc.date.issued
2021-05  
dc.identifier.citation
Giannini Kurina, Franca; Hang, Susana; Rampoldi, Edgar Ariel; Paccioretti, Pablo Ariel; Balzarini, Monica Graciela; Unveiling spatial variability in herbicide soil sorption using Bayesian digital mapping; American Society of Agronomy; Journal of Environmental Quality; 50; 4; 5-2021; 934-944  
dc.identifier.issn
0047-2425  
dc.identifier.uri
http://hdl.handle.net/11336/184148  
dc.description.abstract
Regional mapping herbicide sorption to soil is essential for risk assessment. However, conducting analytical quantification of adsorption coefficient (Kd) in large-scale studies is too costly; therefore, a research question arises on goodness of Kd spatial prediction from sampling. The application of a spatial Bayesian regression (BR) is a newer technique in agricultural and natural resources sciences that allows converting spatially discrete samples into maps covering continuous spatial domains. The objective of this work was to unveil herbicide sorption to soil at a landscape scale by developing a predictive BR model. We integrated a large set of ancillary soil and climate covariables from sites with Kd measurements into a spatial mixed model including site random effects. The models were fitted using glyphosate and atrazine Kds, determined in 80 and 120 sites, respectively, from central Argentina. For model assessment, measurements of global and point-wise prediction errors were obtained by cross-validation; residual variability was estimated by bootstrap to compare BR with regression kriging. Results showed that the BR spatial predictions outperformed regression kriging. The glyphosate Kd model (root mean square prediction error, 13% of the mean) included aluminum oxides, pH, and clay content, whereas the atrazine Kd model strongly depended on soil organic carbon and clay and on climatic variables related to water availability (root mean square prediction error, 27%). Spatial modeling of a complex edaphic process as herbicide sorption to soils enhanced environmental interpretations. An efficient approach for spatial mapping provides a modern perspective on the study of herbicide sorption to soil.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Society of Agronomy  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bayesian spatial regression  
dc.subject
Atrazine  
dc.subject
Glyphosate  
dc.subject.classification
Ciencias del Suelo  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Unveiling spatial variability in herbicide soil sorption using Bayesian digital mapping  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T15:15:12Z  
dc.journal.volume
50  
dc.journal.number
4  
dc.journal.pagination
934-944  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Giannini Kurina, Franca. Universidad Nacional de Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina  
dc.description.fil
Fil: Hang, Susana. Universidad Nacional de Córdoba; Argentina  
dc.description.fil
Fil: Rampoldi, Edgar Ariel. Universidad Nacional de Córdoba; Argentina  
dc.description.fil
Fil: Paccioretti, Pablo Ariel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina  
dc.description.fil
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; Argentina  
dc.journal.title
Journal of Environmental Quality  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/jeq2.20254  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://acsess.onlinelibrary.wiley.com/doi/10.1002/jeq2.20254