Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Unveiling spatial variability in herbicide soil sorption using Bayesian digital mapping

Giannini Kurina, FrancaIcon ; Hang, Susana; Rampoldi, Edgar Ariel; Paccioretti, Pablo ArielIcon ; Balzarini, Monica GracielaIcon
Fecha de publicación: 05/2021
Editorial: American Society of Agronomy
Revista: Journal of Environmental Quality
ISSN: 0047-2425
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias del Suelo

Resumen

Regional mapping herbicide sorption to soil is essential for risk assessment. However, conducting analytical quantification of adsorption coefficient (Kd) in large-scale studies is too costly; therefore, a research question arises on goodness of Kd spatial prediction from sampling. The application of a spatial Bayesian regression (BR) is a newer technique in agricultural and natural resources sciences that allows converting spatially discrete samples into maps covering continuous spatial domains. The objective of this work was to unveil herbicide sorption to soil at a landscape scale by developing a predictive BR model. We integrated a large set of ancillary soil and climate covariables from sites with Kd measurements into a spatial mixed model including site random effects. The models were fitted using glyphosate and atrazine Kds, determined in 80 and 120 sites, respectively, from central Argentina. For model assessment, measurements of global and point-wise prediction errors were obtained by cross-validation; residual variability was estimated by bootstrap to compare BR with regression kriging. Results showed that the BR spatial predictions outperformed regression kriging. The glyphosate Kd model (root mean square prediction error, 13% of the mean) included aluminum oxides, pH, and clay content, whereas the atrazine Kd model strongly depended on soil organic carbon and clay and on climatic variables related to water availability (root mean square prediction error, 27%). Spatial modeling of a complex edaphic process as herbicide sorption to soils enhanced environmental interpretations. An efficient approach for spatial mapping provides a modern perspective on the study of herbicide sorption to soil.
Palabras clave: Bayesian spatial regression , Atrazine , Glyphosate
Ver el registro completo
 
Archivos asociados
Tamaño: 2.666Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184148
DOI: http://dx.doi.org/10.1002/jeq2.20254
URL: https://acsess.onlinelibrary.wiley.com/doi/10.1002/jeq2.20254
Colecciones
Articulos (UFYMA)
Articulos de UNIDAD DE FITOPATOLOGIA Y MODELIZACION AGRICOLA
Citación
Giannini Kurina, Franca; Hang, Susana; Rampoldi, Edgar Ariel; Paccioretti, Pablo Ariel; Balzarini, Monica Graciela; Unveiling spatial variability in herbicide soil sorption using Bayesian digital mapping; American Society of Agronomy; Journal of Environmental Quality; 50; 4; 5-2021; 934-944
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES