Mostrar el registro sencillo del ítem
dc.contributor.author
Kofman, Ernesto Javier
dc.contributor.author
Fernández, Joaquín
dc.contributor.author
Marzorati, Denise Rut
dc.date.available
2023-01-10T10:55:30Z
dc.date.issued
2021-08
dc.identifier.citation
Kofman, Ernesto Javier; Fernández, Joaquín; Marzorati, Denise Rut; Compact sparse symbolic Jacobian computation in large systems of ODEs; Elsevier Science Inc.; Applied Mathematics and Computation; 403; 8-2021; 1-18
dc.identifier.issn
0096-3003
dc.identifier.uri
http://hdl.handle.net/11336/184048
dc.description.abstract
This work introduces a novel algorithm that automatically produces computer code for the calculation of sparse symbolical Jacobian matrices. More precisely, given the code for computing a function f depending on a set of state (independent) variables x, where the code makes use of intermediate algebraic (auxiliary) variables a(x), the algorithm automatically produces the code for the symbolic computation of the matrix J=∂f/∂x in sparse representation. A remarkable feature of the algorithm developed is that it can deal with iterative definitions of the functions preserving the iterative representation during the whole process up to the final Jacobian computation code. That way, in presence of arrays of functions and variables, the computational cost of the code generation and the length of the generated code does not depend on the size of those arrays. This feature is achieved making use of Set–Based Graph representation. The main application of the algorithm is the simulation of large scale dynamical systems with implicit Ordinary Differential Equation (ODE) solvers like CVODE-BDF, whose performance are greatly improved when they are invoked using a sparse Jacobian matrix. However, the algorithm can be used in a more general context for solving large systems of nonlinear equations. The paper, besides introducing the algorithm, discusses some aspects of its implementation in a general purpose ODE solver front-end and analyzes some results obtained.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
JACOBIAN COMPUTATION
dc.subject
LARGE SCALE MODELS
dc.subject
SET–BASED GRAPHS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Compact sparse symbolic Jacobian computation in large systems of ODEs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-31T14:58:37Z
dc.journal.volume
403
dc.journal.pagination
1-18
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Kofman, Ernesto Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Fernández, Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Marzorati, Denise Rut. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.journal.title
Applied Mathematics and Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S009630032100271X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.amc.2021.126181
Archivos asociados