Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Compact sparse symbolic Jacobian computation in large systems of ODEs

Kofman, Ernesto JavierIcon ; Fernández, JoaquínIcon ; Marzorati, Denise RutIcon
Fecha de publicación: 08/2021
Editorial: Elsevier Science Inc.
Revista: Applied Mathematics and Computation
ISSN: 0096-3003
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Ciencias de la Computación

Resumen

This work introduces a novel algorithm that automatically produces computer code for the calculation of sparse symbolical Jacobian matrices. More precisely, given the code for computing a function f depending on a set of state (independent) variables x, where the code makes use of intermediate algebraic (auxiliary) variables a(x), the algorithm automatically produces the code for the symbolic computation of the matrix J=∂f/∂x in sparse representation. A remarkable feature of the algorithm developed is that it can deal with iterative definitions of the functions preserving the iterative representation during the whole process up to the final Jacobian computation code. That way, in presence of arrays of functions and variables, the computational cost of the code generation and the length of the generated code does not depend on the size of those arrays. This feature is achieved making use of Set–Based Graph representation. The main application of the algorithm is the simulation of large scale dynamical systems with implicit Ordinary Differential Equation (ODE) solvers like CVODE-BDF, whose performance are greatly improved when they are invoked using a sparse Jacobian matrix. However, the algorithm can be used in a more general context for solving large systems of nonlinear equations. The paper, besides introducing the algorithm, discusses some aspects of its implementation in a general purpose ODE solver front-end and analyzes some results obtained.
Palabras clave: JACOBIAN COMPUTATION , LARGE SCALE MODELS , SET–BASED GRAPHS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.912Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/184048
URL: https://linkinghub.elsevier.com/retrieve/pii/S009630032100271X
DOI: http://dx.doi.org/10.1016/j.amc.2021.126181
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Kofman, Ernesto Javier; Fernández, Joaquín; Marzorati, Denise Rut; Compact sparse symbolic Jacobian computation in large systems of ODEs; Elsevier Science Inc.; Applied Mathematics and Computation; 403; 8-2021; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES