Mostrar el registro sencillo del ítem
dc.contributor.author
Miccio, Luis Alejandro
dc.contributor.author
Schwartz, Gustavo A.
dc.date.available
2023-01-02T18:45:58Z
dc.date.issued
2021-02
dc.identifier.citation
Miccio, Luis Alejandro; Schwartz, Gustavo A.; Mapping Chemical Structure-Glass Transition Temperature Relationship through Artificial Intelligence; American Chemical Society; Macromolecules; 54; 4; 2-2021; 1811-1817
dc.identifier.issn
0024-9297
dc.identifier.uri
http://hdl.handle.net/11336/182964
dc.description.abstract
Artificial neural networks (ANNs) have been successfully used in the past to predict different properties of polymers based on their chemical structure and to localize and quantify the intramonomer contributions to these properties. In this work, we propose to move forward in order to use the mathematical framework of the ANN for embedding the chemical structure of monomers into a high-dimensional abstract space. This approach allows us not only to accurately predict the glass transition temperature (Tg) of polymers but, even more important, also to encode their chemical structure as m-dimensional vectors in a mathematical space. For this aim, we employed a fully connected neural network trained with a set of more than 200 atactic acrylates that provide the coordinates of the vectorized chemical structures into the m-dimensional space. These data points were then treated with a hierarchical nonparametric clusterization method in order to automatically group similar chemical structures into clusters with alike properties. These clusters were then projected into a human-readable three-dimensional space using principal component analysis. This approach allows us to deal with chemical structures as if they were mathematical entities and therefore to perform quantitative operations, so far hardly imaginable, being essential for both the design of new materials and the understanding of the structure-property relationships.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
POLYMER DYNAMICS
dc.subject
CHEMICAL STRUCTURE
dc.subject.classification
Otras Ingeniería de los Materiales
dc.subject.classification
Ingeniería de los Materiales
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Mapping Chemical Structure-Glass Transition Temperature Relationship through Artificial Intelligence
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-20T18:49:30Z
dc.journal.volume
54
dc.journal.number
4
dc.journal.pagination
1811-1817
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington D.C
dc.description.fil
Fil: Miccio, Luis Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina. Consejo Superior de Investigaciones Científicas; España. Universidad del País Vasco. Centro de Física de Materiales; España
dc.description.fil
Fil: Schwartz, Gustavo A.. Consejo Superior de Investigaciones Científicas; España. Universidad del País Vasco. Centro de Física de Materiales; España
dc.journal.title
Macromolecules
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.macromol.0c02594
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1021/acs.macromol.0c02594
Archivos asociados