Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mapping Chemical Structure-Glass Transition Temperature Relationship through Artificial Intelligence

Miccio, Luis AlejandroIcon ; Schwartz, Gustavo A.
Fecha de publicación: 02/2021
Editorial: American Chemical Society
Revista: Macromolecules
ISSN: 0024-9297
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería de los Materiales

Resumen

Artificial neural networks (ANNs) have been successfully used in the past to predict different properties of polymers based on their chemical structure and to localize and quantify the intramonomer contributions to these properties. In this work, we propose to move forward in order to use the mathematical framework of the ANN for embedding the chemical structure of monomers into a high-dimensional abstract space. This approach allows us not only to accurately predict the glass transition temperature (Tg) of polymers but, even more important, also to encode their chemical structure as m-dimensional vectors in a mathematical space. For this aim, we employed a fully connected neural network trained with a set of more than 200 atactic acrylates that provide the coordinates of the vectorized chemical structures into the m-dimensional space. These data points were then treated with a hierarchical nonparametric clusterization method in order to automatically group similar chemical structures into clusters with alike properties. These clusters were then projected into a human-readable three-dimensional space using principal component analysis. This approach allows us to deal with chemical structures as if they were mathematical entities and therefore to perform quantitative operations, so far hardly imaginable, being essential for both the design of new materials and the understanding of the structure-property relationships.
Palabras clave: DEEP LEARNING , POLYMER DYNAMICS , CHEMICAL STRUCTURE
Ver el registro completo
 
Archivos asociados
Tamaño: 3.966Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182964
URL: https://pubs.acs.org/doi/10.1021/acs.macromol.0c02594
DOI: https://doi.org/10.1021/acs.macromol.0c02594
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Miccio, Luis Alejandro; Schwartz, Gustavo A.; Mapping Chemical Structure-Glass Transition Temperature Relationship through Artificial Intelligence; American Chemical Society; Macromolecules; 54; 4; 2-2021; 1811-1817
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES