Mostrar el registro sencillo del ítem
dc.contributor.author
Barsce, Juan Cruz
dc.contributor.author
Palombarini, Jorge Andrés
dc.contributor.author
Martínez, Ernesto Carlos
dc.date.available
2023-01-02T17:18:59Z
dc.date.issued
2019
dc.identifier.citation
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning; XX Simposio Argentino de Inteligencia Artificial; Salta; Argentina; 2019; 32-38
dc.identifier.issn
2451-7585
dc.identifier.uri
http://hdl.handle.net/11336/182932
dc.description.abstract
Optimization of hyper-parameters in reinforcement learning (RL) algorithms is a key task, because they determine how the agent will learn its policy by interacting with its environment, and thus what data is gathered. In this work, an approach that uses Bayesian optimization to perform a two-step optimization is proposed: first, categorical RL structure hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, while using the best categorical hyper-parameters found in the optimization at theupper-level of abstraction. This two-tier approach is validated in a simulated control task. Results obtained are promising and open the way formore user-independent applications of reinforcement learning.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Sociedad Argentina de Informática e Investigación Operativa
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTONOMOUS LEARNING
dc.subject
BAYESIAN OPTIMIZATION
dc.subject
DEEP LEARNING
dc.subject
REINFORCEMENT LEARNING
dc.subject.classification
Sistemas de Automatización y Control
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-06-21T18:15:18Z
dc.journal.pagination
32-38
dc.journal.pais
Argentina
dc.journal.ciudad
Buenos Aires
dc.description.fil
Fil: Barsce, Juan Cruz. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentina
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/87851
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Nacional
dc.type.subtype
Simposio
dc.description.nombreEvento
XX Simposio Argentino de Inteligencia Artificial
dc.date.evento
2019-09-16
dc.description.ciudadEvento
Salta
dc.description.paisEvento
Argentina
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Sociedad Argentina de Informática
dc.source.revista
XX Simposio Argentino de Inteligencia Artificial
dc.type
Simposio
Archivos asociados