Mostrar el registro sencillo del ítem

dc.contributor.author
Barsce, Juan Cruz  
dc.contributor.author
Palombarini, Jorge Andrés  
dc.contributor.author
Martínez, Ernesto Carlos  
dc.date.available
2023-01-02T17:18:59Z  
dc.date.issued
2019  
dc.identifier.citation
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning; XX Simposio Argentino de Inteligencia Artificial; Salta; Argentina; 2019; 32-38  
dc.identifier.issn
2451-7585  
dc.identifier.uri
http://hdl.handle.net/11336/182932  
dc.description.abstract
Optimization of hyper-parameters in reinforcement learning (RL) algorithms is a key task, because they determine how the agent will learn its policy by interacting with its environment, and thus what data is gathered. In this work, an approach that uses Bayesian optimization to perform a two-step optimization is proposed: first, categorical RL structure hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, while using the best categorical hyper-parameters found in the optimization at theupper-level of abstraction. This two-tier approach is validated in a simulated control task. Results obtained are promising and open the way formore user-independent applications of reinforcement learning.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sociedad Argentina de Informática e Investigación Operativa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AUTONOMOUS LEARNING  
dc.subject
BAYESIAN OPTIMIZATION  
dc.subject
DEEP LEARNING  
dc.subject
REINFORCEMENT LEARNING  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-06-21T18:15:18Z  
dc.journal.pagination
32-38  
dc.journal.pais
Argentina  
dc.journal.ciudad
Buenos Aires  
dc.description.fil
Fil: Barsce, Juan Cruz. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina  
dc.description.fil
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentina  
dc.description.fil
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://sedici.unlp.edu.ar/handle/10915/87851  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Nacional  
dc.type.subtype
Simposio  
dc.description.nombreEvento
XX Simposio Argentino de Inteligencia Artificial  
dc.date.evento
2019-09-16  
dc.description.ciudadEvento
Salta  
dc.description.paisEvento
Argentina  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Sociedad Argentina de Informática  
dc.source.revista
XX Simposio Argentino de Inteligencia Artificial  
dc.type
Simposio