Evento
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning
Tipo del evento:
Simposio
Nombre del evento:
XX Simposio Argentino de Inteligencia Artificial
Fecha del evento:
16/09/2019
Institución Organizadora:
Sociedad Argentina de Informática;
Título de la revista:
XX Simposio Argentino de Inteligencia Artificial
Editorial:
Sociedad Argentina de Informática e Investigación Operativa
ISSN:
2451-7585
Idioma:
Inglés
Clasificación temática:
Resumen
Optimization of hyper-parameters in reinforcement learning (RL) algorithms is a key task, because they determine how the agent will learn its policy by interacting with its environment, and thus what data is gathered. In this work, an approach that uses Bayesian optimization to perform a two-step optimization is proposed: first, categorical RL structure hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, while using the best categorical hyper-parameters found in the optimization at theupper-level of abstraction. This two-tier approach is validated in a simulated control task. Results obtained are promising and open the way formore user-independent applications of reinforcement learning.
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(CCT - CORDOBA)
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Eventos(INGAR)
Eventos de INST.DE DESARROLLO Y DISEÑO (I)
Eventos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning; XX Simposio Argentino de Inteligencia Artificial; Salta; Argentina; 2019; 32-38
Compartir