Mostrar el registro sencillo del ítem
dc.contributor.author
Marelli, Damian Edgardo
dc.contributor.author
Xu, Yong
dc.contributor.author
Fu, Minyue
dc.contributor.author
Huang, Zenghong
dc.date.available
2022-12-30T01:31:14Z
dc.date.issued
2021-10
dc.identifier.citation
Marelli, Damian Edgardo; Xu, Yong; Fu, Minyue; Huang, Zenghong; Distributed Newton Optimization With Maximized Convergence Rate; Institute of Electrical and Electronics Engineers; IEEE Transactions on Automatic Control; 67; 10; 10-2021; 5555-5562
dc.identifier.issn
0018-9286
dc.identifier.uri
http://hdl.handle.net/11336/182877
dc.description.abstract
The distributed optimization problem is set up in a collection of nodes interconnected via a communication network. The goal is to find the minimizer of a global objective function formed by the sum of local functions known at individual nodes. A number of methods, having different advantages, are available for addressing this problem. The goal of this article is to achieve the maximum possible convergence rate. As the first step toward this end, we propose a new method, which we show converges faster than other available options. As the second step toward our goal, we complement the proposed method with a fully distributed method for estimating the optimal step size that maximizes the convergence rate. We provide theoretical guarantees for the convergence of the resulting method in a neighborhood of the solution. We present numerical experiments showing that, when using the same step size, our method converges significantly faster than its rivals. Experiments also show that the distributed step-size estimation method achieves an asymptotic convergence rate very close to the theoretical maximum.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONVERGENCE
dc.subject
LINEAR PROGRAMMING
dc.subject
OPTIMIZATION METHODS
dc.subject
DISTRIBUTED ALGORITHMS
dc.subject
MINIMIZATION
dc.subject
ESTIMATION
dc.subject
COMMUNICATION NETWORKS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Distributed Newton Optimization With Maximized Convergence Rate
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-08-31T14:58:26Z
dc.journal.volume
67
dc.journal.number
10
dc.journal.pagination
5555-5562
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Xu, Yong. Guangdong University Of Technology; China
dc.description.fil
Fil: Fu, Minyue. Universidad de Newcastle; Australia
dc.description.fil
Fil: Huang, Zenghong. Guangdong University Of Technology; China
dc.journal.title
IEEE Transactions on Automatic Control
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9591351
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TAC.2021.3123244
Archivos asociados