Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Distributed Newton Optimization With Maximized Convergence Rate

Marelli, Damian EdgardoIcon ; Xu, Yong; Fu, Minyue; Huang, Zenghong
Fecha de publicación: 10/2021
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Transactions on Automatic Control
ISSN: 0018-9286
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Ciencias de la Computación

Resumen

The distributed optimization problem is set up in a collection of nodes interconnected via a communication network. The goal is to find the minimizer of a global objective function formed by the sum of local functions known at individual nodes. A number of methods, having different advantages, are available for addressing this problem. The goal of this article is to achieve the maximum possible convergence rate. As the first step toward this end, we propose a new method, which we show converges faster than other available options. As the second step toward our goal, we complement the proposed method with a fully distributed method for estimating the optimal step size that maximizes the convergence rate. We provide theoretical guarantees for the convergence of the resulting method in a neighborhood of the solution. We present numerical experiments showing that, when using the same step size, our method converges significantly faster than its rivals. Experiments also show that the distributed step-size estimation method achieves an asymptotic convergence rate very close to the theoretical maximum.
Palabras clave: CONVERGENCE , LINEAR PROGRAMMING , OPTIMIZATION METHODS , DISTRIBUTED ALGORITHMS , MINIMIZATION , ESTIMATION , COMMUNICATION NETWORKS
Ver el registro completo
 
Archivos asociados
Tamaño: 2.708Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182877
URL: https://ieeexplore.ieee.org/document/9591351
DOI: http://dx.doi.org/10.1109/TAC.2021.3123244
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Marelli, Damian Edgardo; Xu, Yong; Fu, Minyue; Huang, Zenghong; Distributed Newton Optimization With Maximized Convergence Rate; Institute of Electrical and Electronics Engineers; IEEE Transactions on Automatic Control; 67; 10; 10-2021; 5555-5562
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES