Mostrar el registro sencillo del ítem

dc.contributor.author
Marelli, Damian Edgardo  
dc.contributor.author
Sui, Tianju  
dc.contributor.author
Fu, Minyue  
dc.date.available
2022-12-30T01:21:48Z  
dc.date.issued
2021-08  
dc.identifier.citation
Marelli, Damian Edgardo; Sui, Tianju; Fu, Minyue; Distributed Kalman estimation with decoupled local filters; Pergamon-Elsevier Science Ltd; Automatica; 130; 109724; 8-2021; 1-11  
dc.identifier.issn
0005-1098  
dc.identifier.uri
http://hdl.handle.net/11336/182875  
dc.description.abstract
We study a distributed Kalman filtering problem in which a number of nodes cooperate without central coordination to estimate a common state based on local measurements and data received from neighbors. This is typically done by running a local filter at each node using information obtained through some procedure for fusing data across the network. A common problem with existing methods is that the outcome of local filters at each time step depends on the data fused at the previous step. We propose an alternative approach to eliminate this error propagation. The proposed local filters are guaranteed to be stable under some mild conditions on certain global structural data, and their fusion yields the centralized Kalman estimate. The main feature of the new approach is that fusion errors introduced at a given time step do not carry over to subsequent steps. This offers advantages in many situations including when a global estimate is only needed at a rate slower than that of measurements or when there are network interruptions. If the global structural data can be fused correctly asymptotically, the stability of local filters is equivalent to that of the centralized Kalman filter. Otherwise, we provide conditions to guarantee stability and bound the resulting estimation error. Numerical experiments are given to show the advantage of our method over other existing alternatives.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ESTIMATION THEORY  
dc.subject
KALMAN FILTERS  
dc.subject
NETWORKED CONTROL SYSTEMS  
dc.subject
SENSOR NETWORKS  
dc.subject
STABILITY ANALYSIS  
dc.subject
STATISTICAL ANALYSIS  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Distributed Kalman estimation with decoupled local filters  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-08-31T14:58:58Z  
dc.journal.volume
130  
dc.journal.number
109724  
dc.journal.pagination
1-11  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Guangdong University Of Technology; China  
dc.description.fil
Fil: Sui, Tianju. Dalian University Of Technology; China  
dc.description.fil
Fil: Fu, Minyue. Universidad de Newcastle; Australia  
dc.journal.title
Automatica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.automatica.2021.109724  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0005109821002442