Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Distributed Kalman estimation with decoupled local filters

Marelli, Damian EdgardoIcon ; Sui, Tianju; Fu, Minyue
Fecha de publicación: 08/2021
Editorial: Pergamon-Elsevier Science Ltd
Revista: Automatica
ISSN: 0005-1098
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

We study a distributed Kalman filtering problem in which a number of nodes cooperate without central coordination to estimate a common state based on local measurements and data received from neighbors. This is typically done by running a local filter at each node using information obtained through some procedure for fusing data across the network. A common problem with existing methods is that the outcome of local filters at each time step depends on the data fused at the previous step. We propose an alternative approach to eliminate this error propagation. The proposed local filters are guaranteed to be stable under some mild conditions on certain global structural data, and their fusion yields the centralized Kalman estimate. The main feature of the new approach is that fusion errors introduced at a given time step do not carry over to subsequent steps. This offers advantages in many situations including when a global estimate is only needed at a rate slower than that of measurements or when there are network interruptions. If the global structural data can be fused correctly asymptotically, the stability of local filters is equivalent to that of the centralized Kalman filter. Otherwise, we provide conditions to guarantee stability and bound the resulting estimation error. Numerical experiments are given to show the advantage of our method over other existing alternatives.
Palabras clave: ESTIMATION THEORY , KALMAN FILTERS , NETWORKED CONTROL SYSTEMS , SENSOR NETWORKS , STABILITY ANALYSIS , STATISTICAL ANALYSIS
Ver el registro completo
 
Archivos asociados
Tamaño: 279.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182875
DOI: http://dx.doi.org/10.1016/j.automatica.2021.109724
URL: https://www.sciencedirect.com/science/article/abs/pii/S0005109821002442
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Marelli, Damian Edgardo; Sui, Tianju; Fu, Minyue; Distributed Kalman estimation with decoupled local filters; Pergamon-Elsevier Science Ltd; Automatica; 130; 109724; 8-2021; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES