Mostrar el registro sencillo del ítem
dc.contributor.author
Montoya Cháirez, Jorge
dc.contributor.author
Rossomando, Fracisco G.
dc.contributor.author
Carelli Albarracin, Ricardo Oscar
dc.contributor.author
Santibáñez, Víctor
dc.contributor.author
Moreno Valenzuela, Javier
dc.date.available
2022-12-29T02:55:33Z
dc.date.issued
2021-06
dc.identifier.citation
Montoya Cháirez, Jorge; Rossomando, Fracisco G.; Carelli Albarracin, Ricardo Oscar; Santibáñez, Víctor; Moreno Valenzuela, Javier; Adaptive RBF neural network-based control of an underactuated control moment gyroscope; Springer; Neural Computing And Applications; 33; 12; 6-2021; 6805-6818
dc.identifier.issn
0941-0643
dc.identifier.uri
http://hdl.handle.net/11336/182771
dc.description.abstract
Radial basis function (RBF) neural networks have the advantages of excellent ability for the learning of the processes and certain immunity to disturbances when using in control systems. The robust trajectory tracking control of complex underactuated mechanical systems is a difficult problem that requires effective approaches. In particular, adaptive RBF neural networks are a good candidate to deal with that type of problems. In this document, a new method to solve the problem of trajectory tracking of an underactuated control moment gyroscope is addressed. This work is focused on the approximation of the unknown function by using an adaptive neural network with RBF fully tuned. The stability of the proposed method is studied by showing that the trajectory tracking error converges to zero while the solutions of the internal dynamics are bounded for all time. Comparisons between the model-based controller, a cascade PID scheme, the adaptive regressor-based controller, and an adaptive neural network-based controller previously studied are performed by experiments with and without two kinds of disturbances in order to validate the proposed method.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONTROL MOMENT GYROSCOPE
dc.subject
NEURAL NETWORKS
dc.subject
RADIAL BASIS FUNCTIONS
dc.subject
REAL-TIME EXPERIMENTS
dc.subject
TRAJECTORY TRACKING CONTROL
dc.subject
UNDERACTUATED SYSTEMS
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Adaptive RBF neural network-based control of an underactuated control moment gyroscope
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T11:55:11Z
dc.journal.volume
33
dc.journal.number
12
dc.journal.pagination
6805-6818
dc.journal.pais
Alemania
dc.description.fil
Fil: Montoya Cháirez, Jorge. Instituto Politécnico Nacional; México
dc.description.fil
Fil: Rossomando, Fracisco G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Santibáñez, Víctor. Tecnológico Nacional de México; México
dc.description.fil
Fil: Moreno Valenzuela, Javier. Instituto Politécnico Nacional; México
dc.journal.title
Neural Computing And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00521-020-05456-8
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00521-020-05456-8
Archivos asociados