Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Adaptive RBF neural network-based control of an underactuated control moment gyroscope

Montoya Cháirez, Jorge; Rossomando, Fracisco G.; Carelli Albarracin, Ricardo OscarIcon ; Santibáñez, Víctor; Moreno Valenzuela, Javier
Fecha de publicación: 06/2021
Editorial: Springer
Revista: Neural Computing And Applications
ISSN: 0941-0643
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

Radial basis function (RBF) neural networks have the advantages of excellent ability for the learning of the processes and certain immunity to disturbances when using in control systems. The robust trajectory tracking control of complex underactuated mechanical systems is a difficult problem that requires effective approaches. In particular, adaptive RBF neural networks are a good candidate to deal with that type of problems. In this document, a new method to solve the problem of trajectory tracking of an underactuated control moment gyroscope is addressed. This work is focused on the approximation of the unknown function by using an adaptive neural network with RBF fully tuned. The stability of the proposed method is studied by showing that the trajectory tracking error converges to zero while the solutions of the internal dynamics are bounded for all time. Comparisons between the model-based controller, a cascade PID scheme, the adaptive regressor-based controller, and an adaptive neural network-based controller previously studied are performed by experiments with and without two kinds of disturbances in order to validate the proposed method.
Palabras clave: CONTROL MOMENT GYROSCOPE , NEURAL NETWORKS , RADIAL BASIS FUNCTIONS , REAL-TIME EXPERIMENTS , TRAJECTORY TRACKING CONTROL , UNDERACTUATED SYSTEMS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.533Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182771
DOI: http://dx.doi.org/10.1007/s00521-020-05456-8
URL: https://link.springer.com/article/10.1007/s00521-020-05456-8
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Montoya Cháirez, Jorge; Rossomando, Fracisco G.; Carelli Albarracin, Ricardo Oscar; Santibáñez, Víctor; Moreno Valenzuela, Javier; Adaptive RBF neural network-based control of an underactuated control moment gyroscope; Springer; Neural Computing And Applications; 33; 12; 6-2021; 6805-6818
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES