Mostrar el registro sencillo del ítem
dc.contributor.author
Cortázar, Carmen
dc.contributor.author
Quirós, Fernando
dc.contributor.author
Wolanski, Noemi Irene
dc.date.available
2022-12-28T10:59:34Z
dc.date.issued
2017-05
dc.identifier.citation
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-254
dc.identifier.issn
1536-1365
dc.identifier.uri
http://hdl.handle.net/11336/182625
dc.description.abstract
Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
ASYMPTOTIC BEHAVIOR
dc.subject
MATCHED ASYMPTOTICS
dc.subject
POROUS MEDIUM EQUATION ON THE HALF-LINE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-12-27T11:00:38Z
dc.identifier.eissn
2169-0375
dc.journal.volume
17
dc.journal.number
2
dc.journal.pagination
245-254
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
dc.description.fil
Fil: Quirós, Fernando. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España
dc.description.fil
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.journal.title
Advanced Nonlinear Studies
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/ans-2017-0006/html
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/ans-2017-0006
Archivos asociados