Artículo
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
Fecha de publicación:
05/2017
Editorial:
De Gruyter
Revista:
Advanced Nonlinear Studies
ISSN:
1536-1365
e-ISSN:
2169-0375
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-254
Compartir
Altmétricas