Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics

Brigante, Federico IvánIcon ; Podio, Natalia SoledadIcon ; Wunderlin, Daniel AlbertoIcon ; Baroni, María VerónicaIcon
Fecha de publicación: 03/2022
Editorial: Elsevier
Revista: Food Chemistry
ISSN: 0308-8146
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Chia, flax, and sesame seeds are well known for their nutritional quality and are commonly included in bakery products. So far, the development of methods to verify their presence and authenticity in foods is a requisite and a raised need. In this work we applied untargeted metabolomics to propose authenticity markers. Seeds were analyzed by HPLC-MS/MS and 9938 features in negative mode and 9044 in positive mode were obtained by Mzmine. After isotopes grouping, alignment, gap-filling, filtering adducts, and normalization, PCA was applied to explore the dataset and recognize pre-existent classification patterns. OPLS-DA analysis and S-Plots were used as supervised methods. Twenty-five molecules (12 in negative mode and 13 in positive mode) were selected as discriminant for the three seeds, polyphenols and lignans were identified among them. To the best of our knowledge, this is the first approach using non-target HPLC-MS/MS for the authentication of chia, flax and sesame seeds.
Palabras clave: FOOD AUTHENTICITY , NUTRITIVE SEEDS , OPLS-DA , PCA , UNTARGETED METABOLOMICS
Ver el registro completo
 
Archivos asociados
Tamaño: 1.023Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182368
URL: https://www.sciencedirect.com/science/article/pii/S030881462102361X
DOI: https://doi.org/10.1016/j.foodchem.2021.131355
Colecciones
Articulos(ICYTAC)
Articulos de INST. DE CIENCIA Y TECNOLOGIA DE ALIMENTOS CORDOBA
Citación
Brigante, Federico Iván; Podio, Natalia Soledad; Wunderlin, Daniel Alberto; Baroni, María Verónica; Comparative metabolite fingerprinting of chia, flax and sesame seeds using LC-MS untargeted metabolomics; Elsevier; Food Chemistry; 371; 3-2022; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES