Mostrar el registro sencillo del ítem
dc.contributor.author
Ruiz, Juan Jose
dc.contributor.author
Lien, Guo-Yuan
dc.contributor.author
Kondo, Keiichi
dc.contributor.author
Otsuka, Shigenori
dc.contributor.author
Miyoshi, Takemasa
dc.date.available
2022-12-22T20:07:55Z
dc.date.issued
2021-11
dc.identifier.citation
Ruiz, Juan Jose; Lien, Guo-Yuan; Kondo, Keiichi; Otsuka, Shigenori; Miyoshi, Takemasa; Reduced non-Gaussianity by 30s rapid update in convective-scale numerical weather prediction; Copernicus Publications; Nonlinear Processes In Geophysics; 28; 4; 11-2021; 615-626
dc.identifier.issn
1607-7946
dc.identifier.uri
http://hdl.handle.net/11336/182266
dc.description.abstract
Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more nonlinear convective dynamics. In this study, we investigate the degree of the non-Gaussianity of forecast error distributions at 1km resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observation number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for Advanced Library and Environment) model and the LETKF (local ensemble transform Kalman filter) assimilating phased array radar observations every 30s. The results show that non-Gaussianity develops rapidly within convective clouds and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to 40% when the assimilation window is shortened from 5min to 30s, particularly for vertical velocity and radar reflectivity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Copernicus Publications
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DATA ASSIMILATION
dc.subject
WEATHER RADAR
dc.subject
PHASED ARRAY RADAR
dc.subject
NON-GAUSSIANITY
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Reduced non-Gaussianity by 30s rapid update in convective-scale numerical weather prediction
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-20T18:40:29Z
dc.journal.volume
28
dc.journal.number
4
dc.journal.pagination
615-626
dc.journal.pais
Alemania
dc.journal.ciudad
Gottingen
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Rikagaku Kenkyujo; Japón
dc.description.fil
Fil: Lien, Guo-Yuan. Central Weather Bureau, Taiwan; Argentina
dc.description.fil
Fil: Kondo, Keiichi. Meteorological Research Institute; Japón
dc.description.fil
Fil: Otsuka, Shigenori. Rikagaku Kenkyujo; Japón
dc.description.fil
Fil: Miyoshi, Takemasa. Rikagaku Kenkyujo; Japón. University of Maryland; Estados Unidos. Japan Agency for Marine-Earth Science and Technology; Japón
dc.journal.title
Nonlinear Processes In Geophysics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://npg.copernicus.org/articles/28/615/2021/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5194/npg-28-615-2021
Archivos asociados