Mostrar el registro sencillo del ítem

dc.contributor.author
Ruiz, Juan Jose  
dc.contributor.author
Lien, Guo-Yuan  
dc.contributor.author
Kondo, Keiichi  
dc.contributor.author
Otsuka, Shigenori  
dc.contributor.author
Miyoshi, Takemasa  
dc.date.available
2022-12-22T20:07:55Z  
dc.date.issued
2021-11  
dc.identifier.citation
Ruiz, Juan Jose; Lien, Guo-Yuan; Kondo, Keiichi; Otsuka, Shigenori; Miyoshi, Takemasa; Reduced non-Gaussianity by 30s rapid update in convective-scale numerical weather prediction; Copernicus Publications; Nonlinear Processes In Geophysics; 28; 4; 11-2021; 615-626  
dc.identifier.issn
1607-7946  
dc.identifier.uri
http://hdl.handle.net/11336/182266  
dc.description.abstract
Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more nonlinear convective dynamics. In this study, we investigate the degree of the non-Gaussianity of forecast error distributions at 1km resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observation number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for Advanced Library and Environment) model and the LETKF (local ensemble transform Kalman filter) assimilating phased array radar observations every 30s. The results show that non-Gaussianity develops rapidly within convective clouds and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to 40% when the assimilation window is shortened from 5min to 30s, particularly for vertical velocity and radar reflectivity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Copernicus Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DATA ASSIMILATION  
dc.subject
WEATHER RADAR  
dc.subject
PHASED ARRAY RADAR  
dc.subject
NON-GAUSSIANITY  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Reduced non-Gaussianity by 30s rapid update in convective-scale numerical weather prediction  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-20T18:40:29Z  
dc.journal.volume
28  
dc.journal.number
4  
dc.journal.pagination
615-626  
dc.journal.pais
Alemania  
dc.journal.ciudad
Gottingen  
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Rikagaku Kenkyujo; Japón  
dc.description.fil
Fil: Lien, Guo-Yuan. Central Weather Bureau, Taiwan; Argentina  
dc.description.fil
Fil: Kondo, Keiichi. Meteorological Research Institute; Japón  
dc.description.fil
Fil: Otsuka, Shigenori. Rikagaku Kenkyujo; Japón  
dc.description.fil
Fil: Miyoshi, Takemasa. Rikagaku Kenkyujo; Japón. University of Maryland; Estados Unidos. Japan Agency for Marine-Earth Science and Technology; Japón  
dc.journal.title
Nonlinear Processes In Geophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://npg.copernicus.org/articles/28/615/2021/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5194/npg-28-615-2021