Artículo
Reduced non-Gaussianity by 30s rapid update in convective-scale numerical weather prediction
Fecha de publicación:
11/2021
Editorial:
Copernicus Publications
Revista:
Nonlinear Processes In Geophysics
ISSN:
1607-7946
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more nonlinear convective dynamics. In this study, we investigate the degree of the non-Gaussianity of forecast error distributions at 1km resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observation number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for Advanced Library and Environment) model and the LETKF (local ensemble transform Kalman filter) assimilating phased array radar observations every 30s. The results show that non-Gaussianity develops rapidly within convective clouds and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to 40% when the assimilation window is shortened from 5min to 30s, particularly for vertical velocity and radar reflectivity.
Palabras clave:
DATA ASSIMILATION
,
WEATHER RADAR
,
PHASED ARRAY RADAR
,
NON-GAUSSIANITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Citación
Ruiz, Juan Jose; Lien, Guo-Yuan; Kondo, Keiichi; Otsuka, Shigenori; Miyoshi, Takemasa; Reduced non-Gaussianity by 30s rapid update in convective-scale numerical weather prediction; Copernicus Publications; Nonlinear Processes In Geophysics; 28; 4; 11-2021; 615-626
Compartir
Altmétricas