Mostrar el registro sencillo del ítem
dc.contributor.author
Cavasotto, Claudio Norberto
dc.contributor.author
Di Filippo, Juan Ignacio
dc.date.available
2022-12-22T15:32:00Z
dc.date.issued
2021-01
dc.identifier.citation
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; Artificial intelligence in the early stages of drug discovery; Elsevier Science Inc.; Archives of Biochemistry and Biophysics; 698; 108730; 1-2021; 1-20
dc.identifier.issn
0003-9861
dc.identifier.uri
http://hdl.handle.net/11336/182200
dc.description.abstract
Although the use of computational methods within the pharmaceutical industry is well established, there is an urgent need for new approaches that can improve and optimize the pipeline of drug discovery and development. In spite of the fact that there is no unique solution for this need for innovation, there has recently been a strong interest in the use of Artificial Intelligence for this purpose. As a matter of fact, not only there have been major contributions from the scientific community in this respect, but there has also been a growing partnership between the pharmaceutical industry and Artificial Intelligence companies. Beyond these contributions and efforts there is an underlying question, which we intend to discuss in this review: can the intrinsic difficulties within the drug discovery process be overcome with the implementation of Artificial Intelligence? While this is an open question, in this work we will focus on the advantages that these algorithms provide over the traditional methods in the context of early drug discovery.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject
DEEP LEARNING
dc.subject
DRUG DISCOVERY
dc.subject
HIT AND LEAD IDENTIFICATION
dc.subject
MACHINE LEARNING
dc.subject
PROPERTY PREDICTION
dc.subject
TARGET IDENTIFICATION
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Artificial intelligence in the early stages of drug discovery
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T14:10:05Z
dc.journal.volume
698
dc.journal.number
108730
dc.journal.pagination
1-20
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
dc.description.fil
Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina
dc.journal.title
Archives of Biochemistry and Biophysics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.abb.2020.108730
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0003986120307384
Archivos asociados