Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Artificial intelligence in the early stages of drug discovery

Cavasotto, Claudio NorbertoIcon ; Di Filippo, Juan IgnacioIcon
Fecha de publicación: 01/2021
Editorial: Elsevier Science Inc.
Revista: Archives of Biochemistry and Biophysics
ISSN: 0003-9861
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Although the use of computational methods within the pharmaceutical industry is well established, there is an urgent need for new approaches that can improve and optimize the pipeline of drug discovery and development. In spite of the fact that there is no unique solution for this need for innovation, there has recently been a strong interest in the use of Artificial Intelligence for this purpose. As a matter of fact, not only there have been major contributions from the scientific community in this respect, but there has also been a growing partnership between the pharmaceutical industry and Artificial Intelligence companies. Beyond these contributions and efforts there is an underlying question, which we intend to discuss in this review: can the intrinsic difficulties within the drug discovery process be overcome with the implementation of Artificial Intelligence? While this is an open question, in this work we will focus on the advantages that these algorithms provide over the traditional methods in the context of early drug discovery.
Palabras clave: ARTIFICIAL INTELLIGENCE , DEEP LEARNING , DRUG DISCOVERY , HIT AND LEAD IDENTIFICATION , MACHINE LEARNING , PROPERTY PREDICTION , TARGET IDENTIFICATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.898Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/182200
DOI: http://dx.doi.org/10.1016/j.abb.2020.108730
URL: https://www.sciencedirect.com/science/article/abs/pii/S0003986120307384
Colecciones
Articulos(IIMT)
Articulos de INSTITUTO DE INVESTIGACIONES EN MEDICINA TRASLACIONAL
Citación
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; Artificial intelligence in the early stages of drug discovery; Elsevier Science Inc.; Archives of Biochemistry and Biophysics; 698; 108730; 1-2021; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES