Mostrar el registro sencillo del ítem

dc.contributor.author
Pallavicini, Carla  
dc.contributor.author
Sanz Perl Hernandez, Yonatan  
dc.contributor.author
Perez Ipiña, Ignacio Martin  
dc.contributor.author
Kringelbach, Morten  
dc.contributor.author
Deco, Gustavo  
dc.contributor.author
Laufs, Helmut  
dc.contributor.author
Tagliazucchi, Enzo Rodolfo  
dc.date.available
2022-12-16T19:32:01Z  
dc.date.issued
2020-10  
dc.identifier.citation
Pallavicini, Carla; Sanz Perl Hernandez, Yonatan; Perez Ipiña, Ignacio Martin; Kringelbach, Morten; Deco, Gustavo; et al.; Data augmentation based on dynamical systems for the classification of brain states; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 139; 10-2020  
dc.identifier.issn
0960-0779  
dc.identifier.uri
http://hdl.handle.net/11336/181629  
dc.description.abstract
The application of machine learning algorithms to neuroimaging data shows great promise for the classification of physiological and pathological brain states. However, classifiers trained on high dimensional data are prone to overfitting, especially for a low number of training samples. We describe the use of whole-brain computational models for data augmentation in brain state classification. Our low dimensional model is based on nonlinear oscillators coupled by the empirical structural connectivity of the brain. We use this model to enhance a dataset consisting of functional magnetic resonance imaging recordings acquired during all stages of the human wake-sleep cycle. After fitting the model to the average functional connectivity of each state, we show that the synthetic data generated by the model yields classification accuracies comparable to those obtained from the empirical data. We also show that models fitted to individual subjects generate surrogates with enough information to train classifiers that present significant transfer learning accuracy to the whole sample. Whole-brain computational modeling represents a useful tool to produce large synthetic datasets for data augmentation in the classification of certain brain states, with potential applications to computer-assisted diagnosis and prognosis of neuropsychiatric disorders.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
BRAIN STATES  
dc.subject
DATA AUGMENTATION  
dc.subject
DYNAMICAL SYSTEMS  
dc.subject
MACHINE LEARNING  
dc.subject
NEUROIMAGING  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Data augmentation based on dynamical systems for the classification of brain states  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-03-14T21:10:05Z  
dc.journal.volume
139  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Perez Ipiña, Ignacio Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina  
dc.description.fil
Fil: Kringelbach, Morten. University of Oxford; Reino Unido  
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España. Institució Catalana de Recerca i Estudis Avancats; España  
dc.description.fil
Fil: Laufs, Helmut. University of Kiel. Department of Neurology; Alemania  
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.journal.title
Chaos, Solitons And Fractals  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chaos.2020.110069  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0960077920304665