Mostrar el registro sencillo del ítem
dc.contributor.author
Pallavicini, Carla
dc.contributor.author
Sanz Perl Hernandez, Yonatan
dc.contributor.author
Perez Ipiña, Ignacio Martin
dc.contributor.author
Kringelbach, Morten
dc.contributor.author
Deco, Gustavo
dc.contributor.author
Laufs, Helmut
dc.contributor.author
Tagliazucchi, Enzo Rodolfo
dc.date.available
2022-12-16T19:32:01Z
dc.date.issued
2020-10
dc.identifier.citation
Pallavicini, Carla; Sanz Perl Hernandez, Yonatan; Perez Ipiña, Ignacio Martin; Kringelbach, Morten; Deco, Gustavo; et al.; Data augmentation based on dynamical systems for the classification of brain states; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 139; 10-2020
dc.identifier.issn
0960-0779
dc.identifier.uri
http://hdl.handle.net/11336/181629
dc.description.abstract
The application of machine learning algorithms to neuroimaging data shows great promise for the classification of physiological and pathological brain states. However, classifiers trained on high dimensional data are prone to overfitting, especially for a low number of training samples. We describe the use of whole-brain computational models for data augmentation in brain state classification. Our low dimensional model is based on nonlinear oscillators coupled by the empirical structural connectivity of the brain. We use this model to enhance a dataset consisting of functional magnetic resonance imaging recordings acquired during all stages of the human wake-sleep cycle. After fitting the model to the average functional connectivity of each state, we show that the synthetic data generated by the model yields classification accuracies comparable to those obtained from the empirical data. We also show that models fitted to individual subjects generate surrogates with enough information to train classifiers that present significant transfer learning accuracy to the whole sample. Whole-brain computational modeling represents a useful tool to produce large synthetic datasets for data augmentation in the classification of certain brain states, with potential applications to computer-assisted diagnosis and prognosis of neuropsychiatric disorders.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BRAIN STATES
dc.subject
DATA AUGMENTATION
dc.subject
DYNAMICAL SYSTEMS
dc.subject
MACHINE LEARNING
dc.subject
NEUROIMAGING
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Data augmentation based on dynamical systems for the classification of brain states
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-03-14T21:10:05Z
dc.journal.volume
139
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pallavicini, Carla. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Sanz Perl Hernandez, Yonatan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Perez Ipiña, Ignacio Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Kringelbach, Morten. University of Oxford; Reino Unido
dc.description.fil
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España. Institució Catalana de Recerca i Estudis Avancats; España
dc.description.fil
Fil: Laufs, Helmut. University of Kiel. Department of Neurology; Alemania
dc.description.fil
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.journal.title
Chaos, Solitons And Fractals
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chaos.2020.110069
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0960077920304665
Archivos asociados