Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Data augmentation based on dynamical systems for the classification of brain states

Pallavicini, CarlaIcon ; Sanz Perl Hernandez, YonatanIcon ; Perez Ipiña, Ignacio Martin; Kringelbach, Morten; Deco, Gustavo; Laufs, Helmut; Tagliazucchi, Enzo RodolfoIcon
Fecha de publicación: 10/2020
Editorial: Pergamon-Elsevier Science Ltd
Revista: Chaos, Solitons And Fractals
ISSN: 0960-0779
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

The application of machine learning algorithms to neuroimaging data shows great promise for the classification of physiological and pathological brain states. However, classifiers trained on high dimensional data are prone to overfitting, especially for a low number of training samples. We describe the use of whole-brain computational models for data augmentation in brain state classification. Our low dimensional model is based on nonlinear oscillators coupled by the empirical structural connectivity of the brain. We use this model to enhance a dataset consisting of functional magnetic resonance imaging recordings acquired during all stages of the human wake-sleep cycle. After fitting the model to the average functional connectivity of each state, we show that the synthetic data generated by the model yields classification accuracies comparable to those obtained from the empirical data. We also show that models fitted to individual subjects generate surrogates with enough information to train classifiers that present significant transfer learning accuracy to the whole sample. Whole-brain computational modeling represents a useful tool to produce large synthetic datasets for data augmentation in the classification of certain brain states, with potential applications to computer-assisted diagnosis and prognosis of neuropsychiatric disorders.
Palabras clave: BRAIN STATES , DATA AUGMENTATION , DYNAMICAL SYSTEMS , MACHINE LEARNING , NEUROIMAGING
Ver el registro completo
 
Archivos asociados
Tamaño: 4.313Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/181629
DOI: http://dx.doi.org/10.1016/j.chaos.2020.110069
URL: https://www.sciencedirect.com/science/article/abs/pii/S0960077920304665
Colecciones
Articulos (INEU)
Articulos de INSTITUTO DE NEUROCIENCIAS
Citación
Pallavicini, Carla; Sanz Perl Hernandez, Yonatan; Perez Ipiña, Ignacio Martin; Kringelbach, Morten; Deco, Gustavo; et al.; Data augmentation based on dynamical systems for the classification of brain states; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 139; 10-2020
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES