Mostrar el registro sencillo del ítem

dc.contributor.author
Nicolau, Artur  
dc.contributor.author
Suarez, Fernando Daniel  
dc.date.available
2017-06-09T20:03:31Z  
dc.date.issued
2012-05  
dc.identifier.citation
Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-3774  
dc.identifier.issn
0022-1236  
dc.identifier.uri
http://hdl.handle.net/11336/17924  
dc.description.abstract
We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Carlesonnewman Blaschke Products;  
dc.subject
Connected Components  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Paths of inner-related functions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-05-15T17:57:50Z  
dc.journal.volume
262  
dc.journal.number
9  
dc.journal.pagination
3749-3774  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Nicolau, Artur. Universitat Autonoma de Barcelona; España  
dc.description.fil
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.journal.title
Journal Of Functional Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123612000493  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2012.01.026