Artículo
Paths of inner-related functions
Fecha de publicación:
05/2012
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal Of Functional Analysis
ISSN:
0022-1236
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize the connected components of the subset CN∗ of H∞ formed by the products bh, where b is Carleson?Newman Blaschke product and h ∈ H∞ is an invertible function. We use this result to show that, except for finite Blaschke products, no inner function in the little Bloch space is in the closure of one of these components. Our main result says that every inner function can be connected with an element of CN∗ within the set of products uh, where u is inner and h is invertible. We also study some of these issues in the context of Douglas algebras.
Palabras clave:
Carlesonnewman Blaschke Products;
,
Connected Components
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Nicolau, Artur; Suarez, Fernando Daniel; Paths of inner-related functions; Academic Press Inc Elsevier Science; Journal Of Functional Analysis; 262; 9; 5-2012; 3749-3774
Compartir
Altmétricas