Mostrar el registro sencillo del ítem

dc.contributor.author
Trolle, Thomas  
dc.contributor.author
Nielsen, Morten  
dc.date.available
2017-06-09T17:44:30Z  
dc.date.issued
2014-08  
dc.identifier.citation
Trolle, Thomas; Nielsen, Morten; NetTepi: an integrated method for the prediction of T-cell epitopes; Springer Verlag Berlín; Immunogenetics; 66; 7; 8-2014; 449-456  
dc.identifier.issn
0093-7711  
dc.identifier.uri
http://hdl.handle.net/11336/17886  
dc.description.abstract
Multiple factors determine the ability of a peptide to elicit a cytotoxic T cell lymphocyte response. Binding to a major histocompatibility complex class I (MHC-I) molecule is one of the most essential factors, as no peptide can become a T cell epitope unless presented on the cell surface in complex with an MHC-I molecule. As such, peptide-MHC (pMHC) binding affinity predictors are currently the premier methods for T cell epitope prediction, and these prediction methods have been shown to have high predictive performances in multiple studies. However, not all MHC-I binders are T cell epitopes, and multiple studies have investigated what additional factors are important for determining the immunogenicity of a peptide. A recent study suggested that pMHC stability plays an important role in determining if a peptide can become a T cell epitope. Likewise, a T cell propensity model has been proposed for identifying MHC binding peptides with amino acid compositions favoring T cell receptor interactions. In this study, we investigate if improved accuracy for T cell epitope discovery can be achieved by integrating predictions for pMHC binding affinity, pMHC stability, and T cell propensity. We show that a weighted sum approach allows pMHC stability and T cell propensity predictions to enrich pMHC binding affinity predictions. The integrated model leads to a consistent and significant increase in predictive performance and we demonstrate how this can be utilized to decrease the experimental workload of epitope screens. The final method, NetTepi, is publically available at www.cbs.dtu.dk/services/NetTepi  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Verlag Berlín  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
T Cell Epitope  
dc.subject
Peptide Immunogenicity  
dc.subject
Mhc Binding Specificity  
dc.subject
Peptide-Mhc Binding Stability  
dc.subject
Cytotoxic T Lymphocyte  
dc.subject
Mhc Class I  
dc.subject.classification
Otras Ciencias de la Salud  
dc.subject.classification
Ciencias de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
NetTepi: an integrated method for the prediction of T-cell epitopes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-09T15:01:02Z  
dc.identifier.eissn
1432-1211  
dc.journal.volume
66  
dc.journal.number
7  
dc.journal.pagination
449-456  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Trolle, Thomas. Technical University Of Denmark; Dinamarca  
dc.description.fil
Fil: Nielsen, Morten. Universidad Nacional de San Martín; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.journal.title
Immunogenetics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00251-014-0779-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00251-014-0779-0