Mostrar el registro sencillo del ítem
dc.contributor.author
Gallardo Gutiérrez, Eva A.
dc.contributor.author
Gorkin, Pamela
dc.contributor.author
Suarez, Fernando Daniel

dc.date.available
2017-06-08T14:56:17Z
dc.date.issued
2012-04
dc.identifier.citation
Gallardo Gutiérrez, Eva A.; Gorkin, Pamela; Suarez, Fernando Daniel; Orbits of non-elliptic disc automorphisms on H p; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 388; 2; 4-2012; 1013-1026
dc.identifier.issn
0022-247X
dc.identifier.uri
http://hdl.handle.net/11336/17757
dc.description.abstract
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H2 generated by the limit points in the H2 norm of the orbit of a thin Blaschke product B under composition operators Cϕ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the Cϕ-eigenfunctions in H p for 1 p ∞.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Blaschke Products
dc.subject
Invariant Subspaces
dc.subject
Eigenfunctions of Composition Operators
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Orbits of non-elliptic disc automorphisms on H p
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-05-15T17:57:51Z
dc.journal.volume
388
dc.journal.number
2
dc.journal.pagination
1013-1026
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Gallardo Gutiérrez, Eva A.. Universidad Complutense de Madrid; España
dc.description.fil
Fil: Gorkin, Pamela. Bucknell University; Estados Unidos
dc.description.fil
Fil: Suarez, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.journal.title
Journal Of Mathematical Analysis And Applications

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmaa.2011.10.048
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11009905?via%3Dihub
Archivos asociados