Mostrar el registro sencillo del ítem
dc.contributor.author
Roscani, Sabrina Dina
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2022-11-04T15:02:49Z
dc.date.issued
2018-08
dc.identifier.citation
Roscani, Sabrina Dina; Tarzia, Domingo Alberto; Two different fractional Stefan problems which are convergent to the same classical Stefan problem; John Wiley & Sons Ltd; Mathematical Methods In The Applied Sciences; 41; 16; 8-2018; 6842-6850
dc.identifier.issn
0170-4214
dc.identifier.uri
http://hdl.handle.net/11336/176431
dc.description.abstract
Two fractional Stefan problems are considered by using Riemann-Liouville and Caputo derivatives of order α ∈ (0,1) such that, in the limit case (α = 1), both problems coincide with the same classical Stefan problem. For the one and the other problem, explicit solutions in terms of the Wright functions are presented. We prove that these solutions are different even though they converge, when α↗1, to the same classical solution. This result also shows that some limits are not commutative when fractional derivatives are used.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
John Wiley & Sons Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CAPUTO DERIVATIVE
dc.subject
EXPLICIT SOLUTIONS
dc.subject
FRACTIONAL STEFAN PROBLEM
dc.subject
RIEMANN–LIOUVILLE DERIVATIVE
dc.subject
WRIGHT FUNCTIONS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Two different fractional Stefan problems which are convergent to the same classical Stefan problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-11-03T15:45:43Z
dc.journal.volume
41
dc.journal.number
16
dc.journal.pagination
6842-6850
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
dc.journal.title
Mathematical Methods In The Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mma.5196
Archivos asociados