Mostrar el registro sencillo del ítem

dc.contributor.author
Roscani, Sabrina Dina  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2022-11-04T15:02:49Z  
dc.date.issued
2018-08  
dc.identifier.citation
Roscani, Sabrina Dina; Tarzia, Domingo Alberto; Two different fractional Stefan problems which are convergent to the same classical Stefan problem; John Wiley & Sons Ltd; Mathematical Methods In The Applied Sciences; 41; 16; 8-2018; 6842-6850  
dc.identifier.issn
0170-4214  
dc.identifier.uri
http://hdl.handle.net/11336/176431  
dc.description.abstract
Two fractional Stefan problems are considered by using Riemann-Liouville and Caputo derivatives of order α ∈ (0,1) such that, in the limit case (α = 1), both problems coincide with the same classical Stefan problem. For the one and the other problem, explicit solutions in terms of the Wright functions are presented. We prove that these solutions are different even though they converge, when α↗1, to the same classical solution. This result also shows that some limits are not commutative when fractional derivatives are used.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CAPUTO DERIVATIVE  
dc.subject
EXPLICIT SOLUTIONS  
dc.subject
FRACTIONAL STEFAN PROBLEM  
dc.subject
RIEMANN–LIOUVILLE DERIVATIVE  
dc.subject
WRIGHT FUNCTIONS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Two different fractional Stefan problems which are convergent to the same classical Stefan problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-11-03T15:45:43Z  
dc.journal.volume
41  
dc.journal.number
16  
dc.journal.pagination
6842-6850  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina  
dc.journal.title
Mathematical Methods In The Applied Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mma.5196