Artículo
Two different fractional Stefan problems which are convergent to the same classical Stefan problem
Fecha de publicación:
08/2018
Editorial:
John Wiley & Sons Ltd
Revista:
Mathematical Methods In The Applied Sciences
ISSN:
0170-4214
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Two fractional Stefan problems are considered by using Riemann-Liouville and Caputo derivatives of order α ∈ (0,1) such that, in the limit case (α = 1), both problems coincide with the same classical Stefan problem. For the one and the other problem, explicit solutions in terms of the Wright functions are presented. We prove that these solutions are different even though they converge, when α↗1, to the same classical solution. This result also shows that some limits are not commutative when fractional derivatives are used.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Roscani, Sabrina Dina; Tarzia, Domingo Alberto; Two different fractional Stefan problems which are convergent to the same classical Stefan problem; John Wiley & Sons Ltd; Mathematical Methods In The Applied Sciences; 41; 16; 8-2018; 6842-6850
Compartir
Altmétricas