Artículo
Modeling nonbilinear total synchronous fluorescence data matrices with a novel adapted partial least squares method
Schenone, Agustina Violeta
; Gomes, Adriano de Araújo; Culzoni, Maria Julia
; Campiglia, Andres D.; Araújo, Mário Cesar Ugulino de; Goicoechea, Hector Casimiro
Fecha de publicación:
01/2015
Editorial:
Elsevier
Revista:
Analytica Chimica Acta
ISSN:
0003-2670
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A new residual modeling algorithm for nonbilinear data is presented, namely unfolded partial least squares with interference modeling of non bilinear data by multivariate curve resolution by alternating least squares (U-PLS/IMNB/MCR-ALS). Nonbilinearity represents a challenging data structure problem to achieve analyte quantitation from second-order data in the presence of uncalibrated components. Total synchronous fluorescence spectroscopy (TSFS) generates matrices which constitute a typical example of this kind of data. Although the nonbilinear profile of the interferent can be achieved by modeling TSFS data with unfolded partial least squares with residual bilinearization (U-PLS/RBL), an extremely large number of RBL factors has to be considered. Simulated data show that the new model can conveniently handle the studied analytical problem with better performance than PARAFAC, U-PLS/RBL and MCR-ALS, the latter modeling the unfolded data. Besides, one example involving TSFS real matrices illustrates the ability of the new method to handle experimental data, which consists in the determination of ciprofloxacin in the presence of norfloxacin as interferent in water samples.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Schenone, Agustina Violeta; Gomes, Adriano de Araújo; Culzoni, Maria Julia; Campiglia, Andres D.; Araújo, Mário Cesar Ugulino de; et al.; Modeling nonbilinear total synchronous fluorescence data matrices with a novel adapted partial least squares method; Elsevier; Analytica Chimica Acta; 859; 1-2015; 20-28
Compartir
Altmétricas