Mostrar el registro sencillo del ítem

dc.contributor.author
Tomassi, Diego Rodolfo  
dc.contributor.author
Forzani, Liliana Maria  
dc.contributor.author
Duarte, Sabrina Lorena  
dc.contributor.author
Pfeiffer, Ruth M.  
dc.date.available
2022-11-01T18:28:34Z  
dc.date.issued
2021-10  
dc.identifier.citation
Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Duarte, Sabrina Lorena; Pfeiffer, Ruth M.; Sufficient dimension reduction for compositional data; Oxford University Press; Biostatistics; 22; 4; 10-2021; 687-705  
dc.identifier.issn
1465-4644  
dc.identifier.uri
http://hdl.handle.net/11336/175855  
dc.description.abstract
Recent efforts to characterize the human microbiome and its relation to chronic diseases have led to a surge in statistical development for compositional data. We develop likelihood-based sufficient dimension reduction methods (SDR) to find linear combinations that contain all the information in the compositional data on an outcome variable, i.e., are sufficient for modeling and prediction of the outcome. We consider several models for the inverse regression of the compositional vector or transformations of it, as a function of outcome. They include normal, multinomial, and Poisson graphical models that allow for complex dependencies among observed counts. These methods yield efficient estimators of the reduction and can be applied to continuous or categorical outcomes. We incorporate variable selection into the estimation via penalties and address important invariance issues arising from the compositional nature of the data. We illustrate and compare our methods and some established methods for analyzing microbiome data in simulations and using data from the Human Microbiome Project. Displaying the data in the coordinate system of the SDR linear combinations allows visual inspection and facilitates comparisons across studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COUNT DATA  
dc.subject
PENALIZED LIKELIHOOD  
dc.subject
PREDICTION  
dc.subject
REGRESSION  
dc.subject
SUFFICIENT STATISTIC  
dc.subject
VISUALIZATION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Sufficient dimension reduction for compositional data  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-10-25T14:38:57Z  
dc.journal.volume
22  
dc.journal.number
4  
dc.journal.pagination
687-705  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Université de Technologie de Troyes; Francia  
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Duarte, Sabrina Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Pfeiffer, Ruth M.. National Cancer Institute; Estados Unidos  
dc.journal.title
Biostatistics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biostatistics/advance-article/doi/10.1093/biostatistics/kxz060/5689688  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/biostatistics/kxz060