Mostrar el registro sencillo del ítem
dc.contributor.author
Tomassi, Diego Rodolfo
dc.contributor.author
Forzani, Liliana Maria
dc.contributor.author
Duarte, Sabrina Lorena
dc.contributor.author
Pfeiffer, Ruth M.
dc.date.available
2022-11-01T18:28:34Z
dc.date.issued
2021-10
dc.identifier.citation
Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Duarte, Sabrina Lorena; Pfeiffer, Ruth M.; Sufficient dimension reduction for compositional data; Oxford University Press; Biostatistics; 22; 4; 10-2021; 687-705
dc.identifier.issn
1465-4644
dc.identifier.uri
http://hdl.handle.net/11336/175855
dc.description.abstract
Recent efforts to characterize the human microbiome and its relation to chronic diseases have led to a surge in statistical development for compositional data. We develop likelihood-based sufficient dimension reduction methods (SDR) to find linear combinations that contain all the information in the compositional data on an outcome variable, i.e., are sufficient for modeling and prediction of the outcome. We consider several models for the inverse regression of the compositional vector or transformations of it, as a function of outcome. They include normal, multinomial, and Poisson graphical models that allow for complex dependencies among observed counts. These methods yield efficient estimators of the reduction and can be applied to continuous or categorical outcomes. We incorporate variable selection into the estimation via penalties and address important invariance issues arising from the compositional nature of the data. We illustrate and compare our methods and some established methods for analyzing microbiome data in simulations and using data from the Human Microbiome Project. Displaying the data in the coordinate system of the SDR linear combinations allows visual inspection and facilitates comparisons across studies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
COUNT DATA
dc.subject
PENALIZED LIKELIHOOD
dc.subject
PREDICTION
dc.subject
REGRESSION
dc.subject
SUFFICIENT STATISTIC
dc.subject
VISUALIZATION
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Sufficient dimension reduction for compositional data
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-10-25T14:38:57Z
dc.journal.volume
22
dc.journal.number
4
dc.journal.pagination
687-705
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Tomassi, Diego Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina. Université de Technologie de Troyes; Francia
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Duarte, Sabrina Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Departamento de Matemáticas; Argentina
dc.description.fil
Fil: Pfeiffer, Ruth M.. National Cancer Institute; Estados Unidos
dc.journal.title
Biostatistics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/biostatistics/advance-article/doi/10.1093/biostatistics/kxz060/5689688
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/biostatistics/kxz060
Archivos asociados