Artículo
Sufficient dimension reduction for compositional data
Fecha de publicación:
10/2021
Editorial:
Oxford University Press
Revista:
Biostatistics
ISSN:
1465-4644
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recent efforts to characterize the human microbiome and its relation to chronic diseases have led to a surge in statistical development for compositional data. We develop likelihood-based sufficient dimension reduction methods (SDR) to find linear combinations that contain all the information in the compositional data on an outcome variable, i.e., are sufficient for modeling and prediction of the outcome. We consider several models for the inverse regression of the compositional vector or transformations of it, as a function of outcome. They include normal, multinomial, and Poisson graphical models that allow for complex dependencies among observed counts. These methods yield efficient estimators of the reduction and can be applied to continuous or categorical outcomes. We incorporate variable selection into the estimation via penalties and address important invariance issues arising from the compositional nature of the data. We illustrate and compare our methods and some established methods for analyzing microbiome data in simulations and using data from the Human Microbiome Project. Displaying the data in the coordinate system of the SDR linear combinations allows visual inspection and facilitates comparisons across studies.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Tomassi, Diego Rodolfo; Forzani, Liliana Maria; Duarte, Sabrina Lorena; Pfeiffer, Ruth M.; Sufficient dimension reduction for compositional data; Oxford University Press; Biostatistics; 22; 4; 10-2021; 687-705
Compartir
Altmétricas