Artículo
Oscillations and negative velocity autocorrelation emerging from a Brownian particle model with hydrodynamic interactions
Fecha de publicación:
05/2020
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics
ISSN:
1063-651X
e-ISSN:
2470-0053
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the dynamics of a particle in a fluid from a generalized Langevin equation (GLE) with a frictional exponential memory kernel and hydrodynamic interactions. By using Laplace analysis we obtain the analytical expressions for the velocity autocorrelation function (VACF) and mean square displacement (MSD) of the particle. Our results show that, in the strictly asymptotic time limit, the dynamics of the particle correspond to a particle ruled by a GLE with a Dirac delta friction memory kernel and hydrodynamic interactions. However, at intermediate times the dynamical behavior is qualitatively different due to the presence of a characteristic time in the frictional exponential memory kernel. Remarkably, the VACF exhibits oscillations and negative correlation regimes which are reminiscent of features already observed in pioneering works of molecular dynamics simulations. Moreover, ripples in the MSD appear as an emerging behavior associated with the mentioned regimes.
Palabras clave:
NOISE
,
Stochastic analysis methods
,
Stochastic processes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Viñales, Angel Daniel; Camuyrano, Mario; Paissan, Gabriel Hernan; Oscillations and negative velocity autocorrelation emerging from a Brownian particle model with hydrodynamic interactions; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 101; 5; 5-2020; 1-9
Compartir
Altmétricas